Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
> llvm-svn: 374841
llvm-svn: 374895
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
llvm-svn: 374841
The expression of the num_tasks clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374819
The expression of the grainsize clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374810
file.
Reduces duplication and thereby reduces the risk that someone will
forget to update one of these places, as I did when adding
DefaultedDestructorIsConstexpr (though I've been unable to produce
a testcase for which that matters so far).
llvm-svn: 374484
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
In order to enable future improvements to our attribute diagnostics,
this moves info from ParsedAttr into CommonAttributeInfo, then makes
this type the base of the *Attr and ParsedAttr types. Quite a bit of
refactoring took place, including removing a bunch of redundant Spelling
Index propogation.
Differential Revision: https://reviews.llvm.org/D67368
llvm-svn: 371875
Refactor ContentCache::IsSystemFile to IsFileVolatile, checking
SourceManager::userFilesAreVolatile at construction time. This is a
step toward lowering ContentCache down from SourceManager to
FileManager.
No functionality change intended.
https://reviews.llvm.org/D66713
llvm-svn: 369958
when the FileManager is reused across invocations
This commit introduces a parallel API to FileManager's getFile: getFileEntryRef, which returns
a reference to the FileEntry, and the name that was used to access the file. In the case of
a VFS with 'use-external-names', the FileEntyRef contains the external name of the file,
not the filename that was used to access it.
The new API is adopted only in the HeaderSearch and Preprocessor for include file lookup, so that the
accessed path can be propagated to SourceManager's FileInfo. SourceManager's FileInfo now can report this accessed path, using
the new getName method. This API is then adopted in the dependency collector, which now correctly reports dependencies when a file
is included both using a symlink and a real path in the case when the FileManager is reused across multiple Preprocessor invocations.
Note that this patch does not fix all dependency collector issues, as the same problem is still present in other cases when dependencies
are obtained using FileSkipped, InclusionDirective, and HasInclude. This will be fixed in follow-up commits.
Differential Revision: https://reviews.llvm.org/D65907
llvm-svn: 369680
- Create ASTContext::attachCommentsToJustParsedDecls so we don't have to load external comments in Sema when trying to attach existing comments to just parsed Decls.
- Keep comments ordered and cache their decomposed location - faster SourceLoc-based searching.
- Optimize work with redeclarations.
- Keep one comment per redeclaration chain (represented by canonical Decl) instead of comment per redeclaration.
- For redeclaration chains with no comment attached keep just the last declaration in chain that had no comment instead of every comment-less redeclaration.
Differential Revision: https://reviews.llvm.org/D65301
llvm-svn: 368732
Summary:
Added support for basic analysis of the linear variables and linear step
expression. Linear loop iteration variables must be excluded from this
analysis, only non-loop iteration variables must be analyzed.
Reviewers: NoQ
Subscribers: guansong, cfe-commits, caomhin, kkwli0
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65461
llvm-svn: 368295
This moves Bitcode/Bitstream*, Bitcode/BitCodes.h to Bitstream/.
This is needed to avoid a circular dependency when using the bitstream
code for parsing optimization remarks.
Since Bitcode uses Core for the IR part:
libLLVMRemarks -> Bitcode -> Core
and Core uses libLLVMRemarks to generate remarks (see
IR/RemarkStreamer.cpp):
Core -> libLLVMRemarks
we need to separate the Bitstream and Bitcode part.
For clang-doc, it seems that it doesn't need the whole bitcode layer, so
I updated the CMake to only use the bitstream part.
Differential Revision: https://reviews.llvm.org/D63899
llvm-svn: 365091
Summary:
When using ConstantExpr we often need the result of the expression to be kept in the AST. Currently this is done on a by the node that needs the result and has been done multiple times for enumerator, for constexpr variables... . This patch adds to ConstantExpr the ability to store the result of evaluating the expression. no functional changes expected.
Changes:
- Add trailling object to ConstantExpr that can hold an APValue or an uint64_t. the uint64_t is here because most ConstantExpr yield integral values so there is an optimized layout for integral values.
- Add basic* serialization support for the trailing result.
- Move conversion functions from an enum to a fltSemantics from clang::FloatingLiteral to llvm::APFloatBase. this change is to make it usable for serializing APValues.
- Add basic* Import support for the trailing result.
- ConstantExpr created in CheckConvertedConstantExpression now stores the result in the ConstantExpr Node.
- Adapt AST dump to print the result when present.
basic* : None, Indeterminate, Int, Float, FixedPoint, ComplexInt, ComplexFloat,
the result is not yet used anywhere but for -ast-dump.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: rnkovacs, hiraditya, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62399
llvm-svn: 363493
This permits an init-capture to introduce a new pack:
template<typename ...T> auto x = [...a = T()] { /* a is a pack */ };
To support this, the mechanism for allowing ParmVarDecls to be packs has
been extended to support arbitrary local VarDecls.
llvm-svn: 361300
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
Sort the elements of Sema::OpenCLTypeExtMap and Sema::OpenCLDeclExtMap
by TypeIDs and DeclIDs to guarantee a stable serialization order.
Differential Revision: https://reviews.llvm.org/D60835
Reviewed By: Anastasia
Reviewers: Anastasia, lebedev.ri
llvm-svn: 358674
allocators.
It is better to deduce omp_allocator_handle_t type from the predefined
allocators, because omp.h header might not define it explicitly. Plus,
it allows to identify the predefined allocators correctly when trying to
build the allcoator for the global variables.
llvm-svn: 356607
Add an option to cache the generated PCH in the ModuleCache when
emitting it. This protects clients that build PCHs and read them in the
same process, allowing them to avoid race conditions between parallel
jobs the same way that Clang's implicit module build system does.
rdar://problem/48740787
llvm-svn: 355950
Leverage the InMemoryModuleCache to invalidate a module the first time
it fails to import (and to lock a module as soon as it's built or
imported successfully). For implicit module builds, this optimizes
importing deep graphs where the leaf module is out-of-date; see example
near the end of the commit message.
Previously the cache finalized ("locked in") all modules imported so far
when starting a new module build. This was sufficient to prevent
loading two versions of the same module, but was somewhat arbitrary and
hard to reason about.
Now the cache explicitly tracks module state, where each module must be
one of:
- Unknown: module not in the cache (yet).
- Tentative: module in the cache, but not yet fully imported.
- ToBuild: module found on disk could not be imported; need to build.
- Final: module in the cache has been successfully built or imported.
Preventing repeated failed imports avoids variation in builds based on
shifting filesystem state. Now it's guaranteed that a module is loaded
from disk exactly once. It now seems safe to remove
FileManager::invalidateCache, but I'm leaving that for a later commit.
The new, precise logic uncovered a pre-existing problem in the cache:
the map key is the module filename, and different contexts use different
filenames for the same PCM file. (In particular, the test
Modules/relative-import-path.c does not build without this commit.
r223577 started using a relative path to describe a module's base
directory when importing it within another module. As a result, the
module cache sees an absolute path when (a) building the module or
importing it at the top-level, and a relative path when (b) importing
the module underneath another one.)
The "obvious" fix is to resolve paths using FileManager::getVirtualFile
and change the map key for the cache to a FileEntry, but some contexts
(particularly related to ASTUnit) have a shorter lifetime for their
FileManager than the InMemoryModuleCache. This is worth pursuing
further in a later commit; perhaps by tying together the FileManager and
InMemoryModuleCache lifetime, or moving the in-memory PCM storage into a
VFS layer.
For now, use the PCM's base directory as-written for constructing the
filename to check the ModuleCache.
Example
=======
To understand the build optimization, first consider the build of a
module graph TU -> A -> B -> C -> D with an empty cache:
TU builds A'
A' builds B'
B' builds C'
C' builds D'
imports D'
B' imports C'
imports D'
A' imports B'
imports C'
imports D'
TU imports A'
imports B'
imports C'
imports D'
If we build TU again, where A, B, C, and D are in the cache and D is
out-of-date, we would previously get this build:
TU imports A
imports B
imports C
imports D (out-of-date)
TU builds A'
A' imports B
imports C
imports D (out-of-date)
builds B'
B' imports C
imports D (out-of-date)
builds C'
C' imports D (out-of-date)
builds D'
imports D'
B' imports C'
imports D'
A' imports B'
imports C'
imports D'
TU imports A'
imports B'
imports C'
imports D'
After this commit, we'll immediateley invalidate A, B, C, and D when we
first observe that D is out-of-date, giving this build:
TU imports A
imports B
imports C
imports D (out-of-date)
TU builds A' // The same graph as an empty cache.
A' builds B'
B' builds C'
C' builds D'
imports D'
B' imports C'
imports D'
A' imports B'
imports C'
imports D'
TU imports A'
imports B'
imports C'
imports D'
The new build matches what we'd naively expect, pretty closely matching
the original build with the empty cache.
rdar://problem/48545366
llvm-svn: 355778
Change MemoryBufferCache to InMemoryModuleCache, moving it from Basic to
Serialization. Another patch will start using it to manage module build
more explicitly, but this is split out because it's mostly mechanical.
Because of the move to Serialization we can no longer abuse the
Preprocessor to forward it to the ASTReader. Besides the rename and
file move, that means Preprocessor::Preprocessor has one fewer parameter
and ASTReader::ASTReader has one more.
llvm-svn: 355777
This patch implements the parsing and sema support for the OpenMP
'from'-clause with potential user-defined mappers attached.
User-defined mappers are a new feature in OpenMP 5.0. A 'from'-clause
can have an explicit or implicit associated mapper, which instructs the
compiler to generate and use customized mapping functions. An example is
shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(id: struct S s) map(s, s.d[0:s.len])
struct S ss;
#pragma omp target update from(mapper(id): ss) // use the mapper with name 'id' to map ss from device
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D58638
llvm-svn: 354817
This patch implements the parsing and sema support for OpenMP to clause
with potential user-defined mappers attached. User defined mapper is a
new feature in OpenMP 5.0. A to/from clause can have an explicit or
implicit associated mapper, which instructs the compiler to generate and
use customized mapping functions. An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(id: struct S s) map(s, s.d[0:s.len])
struct S ss;
#pragma omp target update to(mapper(id): ss) // use the mapper with name 'id' to map ss to device
Contributed-by: <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D58523
llvm-svn: 354698
This patch implements the parsing and sema support for OpenMP map
clauses with potential user-defined mapper attached. User defined mapper
is a new feature in OpenMP 5.0. A map clause can have an explicit or
implicit associated mapper, which instructs the compiler to generate
extra data mapping. An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(id: struct S s) map(s, s.d[0:s.len])
struct S ss;
#pragma omp target map(mapper(id) tofrom: ss) // use the mapper with name 'id' to map ss
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D58074
llvm-svn: 354347
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
A map clause with the close map-type-modifier is a hint to
prefer that the variables are mapped using a copy into faster
memory.
Patch by Ahsan Saghir (saghir)
Differential Revision: https://reviews.llvm.org/D55719
llvm-svn: 349551
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Note: This recommits the previously reverted patch,
but now it is commited together with a fix for lldb.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 349019
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
When debugging a boost build with a modified
version of Clang, I discovered that the PTH implementation
stores TokenKind in 8 bits. However, we currently have 368
TokenKinds.
The result is that the value gets truncated and the wrong token
gets picked up when including PTH files. It seems that this will
go wrong every time someone uses a token that uses the 9th bit.
Upon asking on IRC, it was brought up that this was a highly
experimental features that was considered a failure. I discovered
via googling that BoostBuild (mostly Boost.Math) is the only user of
this
feature, using the CC1 flag directly. I believe that this can be
transferred over to normal PCH with minimal effort:
https://github.com/boostorg/build/issues/367
Based on advice on IRC and research showing that this is a nearly
completely unused feature, this patch removes it entirely.
Note: I considered leaving the build-flags in place and making them
emit an error/warning, however since I've basically identified and
warned the only user, it seemed better to just remove them.
Differential Revision: https://reviews.llvm.org/D54547
Change-Id: If32744275ef1f585357bd6c1c813d96973c4d8d9
llvm-svn: 348266
Summary:
I recently discovered that adding the following code into `opencl-c.h` causes
failure of `test/Headers/opencl-c-header.cl`:
```
#pragma OPENCL EXTENSION cl_my_ext : begin
void cl_my_ext_foobarbaz();
#pragma OPENCL EXTENSIOn cl_my_ext : end
```
Clang crashes at the assertion is `ASTReader::getGlobalSubmoduleID()`:
```
assert(I != M.SubmoduleRemap.end() && "Invalid index into submodule index remap");
```
The root cause of the problem that to deserialize `OPENCL_EXTENSION_DECLS`
section `ASTReader` needs to deserialize a Decl contained in it. In turn,
deserializing a Decl requires information about whether this declaration is
part of a (sub)module, but this information is not read yet because it is
located further in a module file.
Reviewers: Anastasia, yaxunl, JDevlieghere
Reviewed By: Anastasia
Subscribers: sidorovd, cfe-commits, asavonic
Differential Revision: https://reviews.llvm.org/D53200
llvm-svn: 345497