In D144319, Clang tried to land a change that would cause some functions
that are not supposed to return nullptr to optimize better. As reported
in https://reviews.llvm.org/D144319#4203982, libc++ started seeing
failures in its CI shortly after this change was landed.
As explained in D146379, the reason for these failures is that libc++'s
throwing `operator new` can in fact return nullptr when compiled with
exceptions disabled. However, this contradicts the Standard, which
clearly says that the throwing version of `operator new(size_t)` should
never return nullptr. This is actually a long standing issue. I've
previously seen a case where LTO would optimize incorrectly based on the
assumption that `operator new` doesn't return nullptr, an assumption
that was violated in that case because libc++.dylib was compiled with
-fno-exceptions.
Unfortunately, fixing this is kind of tricky. The Standard has a few
requirements for the allocation functions, some of which are impossible
to satisfy under -fno-exceptions:
1. `operator new(size_t)` must never return nullptr
2. `operator new(size_t, nothrow_t)` must call the throwing version and
return nullptr on failure to allocate
3. We can't throw exceptions when compiled with -fno-exceptions
In the case where exceptions are enabled, things work nicely.
`new(size_t)` throws and `new(size_t, nothrow_t)` uses a try-catch to
return nullptr. However, when compiling the library with
-fno-exceptions, we can't throw an exception from `new(size_t)`, and we
can't catch anything from `new(size_t, nothrow_t)`. The only thing we
can do from `new(size_t)` is actually abort the program, which does not
make it possible for `new(size_t, nothrow_t)` to catch something and
return nullptr.
This patch makes the following changes:
1. When compiled with -fno-exceptions, the throwing version of `operator
new` will now abort on failure instead of returning nullptr on failure.
This resolves the issue that the compiler could mis-compile based on the
assumption that nullptr is never returned. This constitutes an API and
ABI breaking change for folks compiling the library with -fno-exceptions
(which is not the general public, who merely uses libc++ headers but use
a shared library that has already been compiled). This should mostly
impact vendors and other folks who compile libc++.dylib themselves.
2. When the library is compiled with -fexceptions, the nothrow version
of `operator new` has no change. When the library is compiled with
-fno-exceptions, the nothrow version of `operator new` will now check
whether the throwing version of `operator new` has been overridden. If
it has not been overridden, then it will use an implementation
equivalent to that of the throwing `operator new`, except it will return
nullptr on failure to allocate (instead of terminating). However, if the
throwing `operator new` has been overridden, it is now an error NOT to
also override the nothrow `operator new`. Indeed, there is no way for us
to implement a valid nothrow `operator new` without knowing the exact
implementation of the throwing version.
In summary, this change will impact people who fall into the following
intersection of conditions:
- They use the libc++ shared/static library built with `-fno-exceptions`
- They do not override `operator new(..., std::nothrow_t)`
- They override `operator new(...)` (the throwing version)
- They use `operator new(..., std::nothrow_t)`
We believe this represents a small number of people.
Fixes#60129
rdar://103958777
Differential Revision: https://reviews.llvm.org/D150610
This patch adds a configuration of the libc++ test suite that enables
optimizations when building the tests. It also adds a new CI
configuration to exercise this on a regular basis. This is added in the
context of [1], which requires building with optimizations in order to
hit the bug.
[1]: https://github.com/llvm/llvm-project/issues/68552
This will also be used in some PSTL backends.
Reviewed By: ldionne, #libc, Mordante
Spies: arichardson, mstorsjo, Mordante, sstefan1, jplehr, libcxx-commits
Differential Revision: https://reviews.llvm.org/D152208
This doesn't affect our ABI because `std::string::substr()` isn't in the dylib and the mangling of `substr() const` and `substr() const&` are different.
Reviewed By: ldionne, Mordante, var-const, avogelsgesang, #libc
Spies: arphaman, huixie90, libcxx-commits
Differential Revision: https://reviews.llvm.org/D131668
This patch is the rebase and squash of three earlier patches.
It supersedes all three of them.
- D47111: experimental monotonic_buffer_resource.
- D47358: experimental pool resources.
- D47360: Copy std::experimental::pmr to std::pmr.
The significant difference between this patch and the-sum-of-those-three
is that this patch does not add `std::experimental::pmr::monotonic_buffer_resource`
and so on. This patch simply adds the C++17 standard facilities, and
leaves the `std::experimental` namespace entirely alone.
Differential Revision: https://reviews.llvm.org/D89057
... it's easier to suppress warnings internally, where we can detect the compiler.
* Rename `TEST_COMPILER_C1XX` to `TEST_COMPILER_MSVC`
* Rename all `TEST_WORKAROUND_C1XX_<meow>` to `TEST_WORKAROUND_MSVC_<meow>`
Differential Revision: https://reviews.llvm.org/D117422