The device should use the same float point representation as the host.
Previous patch fixed the handling of the sizes of the float point types,
but did not fixed the fp semantics. This patch makes target device to
use the host fp semantics. this is required for the correct data
transfer between host and device and correct codegen.
llvm-svn: 365485
In gcc PowerPC, long double has 3 mangling schemes:
-mlong-double-64: `e`
-mlong-double-128 -mabi=ibmlongdouble: `g`
-mlong-double-128 -mabi=ieeelongdouble: `u9__ieee128` (gcc <= 8.1: `U10__float128`)
The current useFloat128ManglingForLongDouble() bisection is not suitable
when we support -mlong-double-128 in clang (D64277). Replace
useFloat128ManglingForLongDouble() with getLongDoubleMangling() and
getFloat128Mangling() to allow 3 mangling schemes.
I also deleted the `getTriple().isOSBinFormatELF()` check (the Darwin
support has gone: https://reviews.llvm.org/D50988).
For x86, change the mangled code of __float128 from `U10__float128` to `g`. `U10__float128` was wrongly copied from PowerPC.
The test will be added to `test/CodeGen/x86-long-double.cpp` in D64277.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D64276
llvm-svn: 365480
The `sge/sgeu Dst, Src1, Src2/Imm` pseudo instructions set register
`Dst` to 1 if register `Src1` is greater than or equal `Src2/Imm` and
to 0 otherwise.
Differential Revision: https://reviews.llvm.org/D64314
llvm-svn: 365476
The `sgt/sgtu Dst, Src1, Src2/Imm` pseudo instructions set register
`Dst` to 1 if register `Src1` is greater than `Src2/Imm` and to 0 otherwise.
Differential Revision: https://reviews.llvm.org/D64313
llvm-svn: 365475
The Loads.h API changed so that a Type parameter is now mandatory in
preparation for pointer types being opaque. Unfortunately I don't build
polly routinely and it still had some uses. This just provides the
(obvious) load type in each case.
llvm-svn: 365470
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
Dump the DWARF information about call sites and call site parameters into
debug info sections.
The patch also provides an interface for the interpretation of instructions
that could load values of a call site parameters in order to generate DWARF
about the call site parameters.
([13/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60716
llvm-svn: 365467
Summary:
A tooling-focused alternative to the AST. This commit focuses on the
memory-management strategy and the structure of the AST.
More to follow later:
- Operations to mutate the syntax trees and corresponding textual
replacements.
- Mapping between clang AST nodes and syntax tree nodes.
- More node types corresponding to the language constructs.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: llvm-commits, mgorny, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61637
........
Fixes buildbots which were crashing on SyntaxTests.exe
llvm-svn: 365465
Summary:
ASTImporter makes now difference between enums with same name in different translation
units if these are not visible outside.
("Scoped enums" are not handled yet.)
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62484
llvm-svn: 365464
Summary:
Currently it fails on cases like '\001'.
Note: Since `StringLiteral::outputString` dumps most nonprintable
characters in octal value, the exact string literal format isn't preserved,
e.g. `"\x01"` becomes `'\001'`.
Reviewers: gribozavr
Reviewed By: gribozavr
Subscribers: lebedev.ri, Eugene.Zelenko, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64151
Patch by Xiaoyi Zhang.
llvm-svn: 365463
APInt::getSExtValue will assert if getMinSignedBits() > 64. This can happen,
for instance, if examining an i128. Avoid this assertion by checking
Imm.getMinSignedBits() <= 64 before doing
getTLI()->isLegalAddImmediate(Imm.getSExtValue()). We could directly check
getMinSignedBits() <= 12 but it seems better to reuse the isLegalAddImmediate
helper for this.
Differential Revision: https://reviews.llvm.org/D64390
llvm-svn: 365462
DAGTypeLegalizer and SelectionDAGLegalize has helper
functions wrapping the call to TLI.getSetCCResultType(...).
Use those helpers in more places.
llvm-svn: 365456
Summary:
Make sure we use SETGE instead of SETGT when checking
if the sign bit is zero at SMULFIXSAT expansion.
The faulty expansion occured when doing "expand" of
SMULFIXSAT and the scale was exactly matching the
size of the smaller type. For example doing
i64 Z = SMULFIXSAT X, Y, 32
and expanding X/Y/Z into using two i32 values.
The problem was that we sometimes did not saturate
to min when overflowing.
Here is an example using Q3.4 numbers:
Consider that we are multiplying X and Y.
X = 0x80 (-8.0 as Q3.4)
Y = 0x20 (2.0 as Q3.4)
To avoid loss of precision we do a widening
multiplication, getting a 16 bit result
Z = 0xF000 (-16.0 as Q7.8)
To detect negative overflow we should check if
the five most significant bits in Z are less than -1.
Assume that we name the 4 most significant bits
as HH and the next 4 bits as HL. Then we can do the
check by examining if
(HH < -1) or (HH == -1 && "sign bit in HL is zero").
The fault was that we have been doing the check as
(HH < -1) or (HH == -1 && HL > 0)
instead of
(HH < -1) or (HH == -1 && HL >= 0).
In our example HH is -1 and HL is 0, so the old
code did not trigger saturation and simply truncated
the result to 0x00 (0.0). With the bugfix we instead
detect that we should saturate to min, and the result
will be set to 0x80 (-8.0).
Reviewers: leonardchan, bevinh
Reviewed By: leonardchan
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64331
llvm-svn: 365455
Summary:
- Added extraction to a dummy variable
- using auto for the dummy variable type for now
- Works on a function scope
- Adding braces to create a compound statement not supported yet
- added unit tests
Reviewers: sammccall, kadircet
Subscribers: mgorny, jkorous, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63773
llvm-svn: 365453
Some of the wording in the doc (taken largely from the help text), was a
little imprecise in some cases, so this patch makes it a little more
precise.
Reviewed by: JDevlieghere, probinson
Differential Revision: https://reviews.llvm.org/D64332
llvm-svn: 365451
Emit replacements for clobbered parameters location if the parameter
has unmodified value throughout the funciton. This is basic scenario
where we can use the debug entry values.
([12/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58042
llvm-svn: 365444
This test was added by D64200/r365139 to check we don't merge
SHF_MERGE|SHF_STRINGS sections with different alignments (that wastes
space and can make MergeTailAlignment::Builder out of sync).
It has nothing to do with tail merge (-O2), so rename it.
llvm-svn: 365442
This patch modifies the loop peeling transformation so that
it does not expect that there is only one loop exit from latch.
It modifies only transformation. Update of branch weights remains
only for exit from latch.
The motivation is that in follow-up patch I plan to enable loop peeling for
loops with multiple exits but only if other exits then from latch one goes to
block with call to deopt.
For now this patch is NFC.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames, fhahn
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63921
llvm-svn: 365441
This patch removes the test part that relates to the non-strict
behavior of SwitchInstProfUpdateWrapper and changes
the assertion to llvm_unreachable() to allow the check in
release builds.
This patch prepares SwitchInstProfUpdateWrapper to become
strict with one line change. That is need to revert it easily
if any failure will arise.
llvm-svn: 365439
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61809
llvm-svn: 365438