New command line option --shift-ssbo-binding mirrors --shift-ubo-binding, etc.
New reflection query getLocalSize(int dim) queries local size, e.g, CS threads.
This is a partial implemention of structurebuffers supporting:
* structured buffer types of:
* StructuredBuffer
* RWStructuredBuffer
* ByteAddressBuffer
* RWByteAddressBuffer
* Atomic operations on RWByteAddressBuffer
* Load/Load[234], Store/Store[234], GetDimensions methods (where allowed by type)
* globallycoherent flag
But NOT yet supporting:
* AppendStructuredBuffer / ConsumeStructuredBuffer types
* IncrementCounter/DecrementCounter methods
Please note: the stride returned by GetDimensions is as calculated by glslang for std430,
and may not match other environments in all cases.
This obsoletes WIP PR #704, which was built on the pre entry point wrapping master. New version
here uses entry point wrapping.
This is a limited implementation of tessellation shaders. In particular, the following are not functional,
and will be added as separate stages to reduce the size of each PR.
* patchconstantfunctions accepting per-control-point input values, such as
const OutputPatch <hs_out_t, 3> cpv are not implemented.
* patchconstantfunctions whose signature requires an aggregate input type such as
a structure containing builtin variables. Code to synthesize such calls is not
yet present.
These restrictions will be relaxed as soon as possible. Simple cases can compile now: see for example
Test/hulsl.hull.1.tesc - e.g, writing to inner and outer tessellation factors.
PCF invocation is synthesized as an entry point epilogue protected behind a barrier and a test on
invocation ID == 0. If there is an existing invocation ID variable it will be used, otherwise one is
added to the linkage. The PCF and the shader EP interfaces are unioned and builtins appearing in
the PCF but not the EP are also added to the linkage and synthesized as shader inputs.
Parameter matching to (eventually arbitrary) PCF signatures is by builtin variable type. Any user
variables in the PCF signature will result in an error. Overloaded PCF functions will also result in
an error.
[domain()], [partitioning()], [outputtopology()], [outputcontrolpoints()], and [patchconstantfunction()]
attributes to the shader entry point are in place, with the exception of the Pow2 partitioning mode.
Structs are split to remove builtin members to create valid SPIR-V. In this
process, an outer structure array dimension may be propegated onto the
now-removed builtin variables. For example, a mystruct[3].position ->
position[3]. The copy between the split and unsplit forms would handle
this in some cases, but not if the array dimension was at different levels
of aggregate.
It now does this, but may not handle arbitrary composite types. Unclear if
that has any semantic meaning for builtins though.
Previously, a type graph would turn into a type tree. That is,
a deep node that is shared would have multiple copies made.
This is important when creating IO and non-IO versions of deep types.
This needs some render testing, but is destined to be part of master.
This also leads to a variety of other simplifications.
- IO are global symbols, so only need one list of linkage nodes (deferred)
- no longer need parse-context-wide 'inEntryPoint' state, entry-point is localized
- several parts of splitting/flattening are now localized
When copying split types with mixtures of user variables and buitins,
where the builtins are extracted, there is a parallel structures traversal.
The traversal was not obtaining the derefenced types in the array case.
- Add support for invocation functions with "InclusiveScan" and
"ExclusiveScan" modes.
- Add support for invocation functions taking int64/uint64/doube/float16
as inout data types.
This partially addressess issue #670, for when the matrix swizzle
degenerates to a component or column: m[c], m[c][r] (where HLSL
swaps rows and columns for user's view).
An error message is given for the arbitrary cases not covered.
These cases will work for arbitrary use of l-values.
Future work will handle more arbitrary swizzles, which might
not work as arbitrary l-values.
Any previous use would only be for "", which would probably mean changing
include(...) -> includeLocal(...)
See comments about includeLocal() being an additional search over
includeSystem(), not a superset search.
This also removed ForbidIncluder, as
- the message in ForbidIncluder was redundant: error results were
already returned to the caller, which then gives the error it
wants to
- there is a trivial default implementation that a subclass can
override any subset of (I still like abstract base classes though)
- trying to get less implementation out of the interface file anyway
Reads and write syntax to UAV objects is turned into EOpImageLoad/Store
operations. This translation did not support destination swizzles,
for example, "mybuffer[tc].zyx = 3;", so such statements would fail to
compile. Now they work.
Parial updates are explicitly prohibited.
New test: hlsl.rw.swizzle.frag
This PR adds support for default function parameters in the following cases:
1. Simple constants, such as void fn(int x, float myparam = 3)
2. Expressions that can be const folded, such a ... myparam = sin(some_const)
3. Initializer lists that can be const folded, such as ... float2 myparam = {1,2}
New tests are added: hlsl.params.default.frag and hlsl.params.default.err.frag
(for testing error situations, such as ambiguity or non-const-foldable).
In order to avoid sampler method ambiguity, the hlsl better() lambda now
considers sampler matches. Previously, all sampler types looked identical
since only the basic type of EbtSampler was considered.
HLSL allows type keywords to also be identifiers, so a sequence such as "float half = 3" is
valid, or more bizzarely, something like "float.float = int.uint + bool;"
There are places this is not supported. E.g, it's permitted for struct members, but not struct
names or functions. Also, vector or matrix types such as "float3" are not permitted as
identifiers.
This PR adds that support, as well as support for the "half" type. In production shaders,
this was seen with variables named "half". The PR attempts to support this without breaking
useful grammar errors such as "; expected" at the end of unterminated statements, so it errs
on that side at the possible expense of failing to accept valid constructs containing a type
keyword identifier. If others are discovered, they can be added.
Also, half is now accepted as a valid type, alongside the min*float types.
This commit adds support for copying nested hierarchical types of split
types. E.g, a struct of a struct containing both user and builtin interstage
IO variables.
When copying split types, if any subtree does NOT contain builtin interstage
IO, we can copy the whole subtree with one assignment, which saves a bunch
of AST verbosity for memberwise copies of that subtree.
This adds structure splitting, which among other things will enable GS support where input structs
are passed, and thus become input arrays of structs in the GS inputs. That is a common GS case.
The salient points of this PR are:
* Structure splitting has been changed from "always between stages" to "only into the VS and out of
the PS". It had previously happened between stages because it's not legal to pass a struct
containing a builtin IO variable.
* Structs passed between stages are now split into a struct containing ONLY user types, and a
collection of loose builtin IO variables, if any. The user-part is passed as a normal struct
between stages, which is valid SPIR-V now that the builtin IO is removed.
* Internal to the shader, a sanitized struct (with IO qualifiers removed) is used, so that e.g,
functions can work unmodified.
* If a builtin IO such as Position occurs in an arrayed struct, for example as an input to a GS,
the array reference is moved to the split-off loose variable, which is given the array dimension
itself.
When passing things around inside the shader, such as over a function call, the the original type
is used in a sanitized form that removes the builtIn qualifications and makes them temporaries.
This means internal function calls do not have to change. However, the type when returned from
the shader will be member-wise copied from the internal sanitized one to the external type.
The sanitized type is used in variable declarations.
When copying split types and unsplit, if a sub-struct contains only user variables, it is copied
as a single entity to avoid more AST verbosity.
Above strategy arrived at with talks with @johnkslang.
This is a big complex change. I'm inclined to leave it as a WIP until it can get some exposure to
real world cases.
Implement token pasting as per the C++ specification, within the current
style of the PP code.
Non-identifiers (turning 12 ## 10 into the numeral 1210) is not yet covered;
they should be a simple incremental change built on this one.
Addresses issue #255.
This PR implements recursive type flattening. For example, an array of structs of other structs
can be flattened to individual member variables at the shader interface.
This is sufficient for many purposes, e.g, uniforms containing opaque types, but is not sufficient
for geometry shader arrayed inputs. That will be handled separately with structure splitting,
which is not implemented by this PR. In the meantime, that case is detected and triggers an error.
The recursive flattening extends the following three aspects of single-level flattening:
- Flattening of structures to individual members with names such as "foo[0].samp[1]";
- Turning constant references to the nested composite type into a reference to a particular
flattened member.
- Shadow copies between arrays of flattened members and the nested composite type.
Previous single-level flattening only flattened at the shader interface, and that is unchanged by this PR.
Internally, shadow copies are, such as if the type is passed to a function.
Also, the reasons for flattening are unchanged. Uniforms containing opaque types, and interface struct
types are flattened. (The latter will change with structure splitting).
One existing test changes: hlsl.structin.vert, which did in fact contain a nested composite type to be
flattened.
Two new tests are added: hlsl.structarray.flatten.frag, and hlsl.structarray.flatten.geom (currently
issues an error until type splitting is online).
The process of arriving at the individual member from chained postfix expressions is more complex than
it was with one level. See large-ish comment above HlslParseContext::flatten() for details.
PR #577 addresses most but not all of the intrinsic promotion problems.
This PR resolves all known cases in the remainder.
Interlocked ops need special promotion rules because at the time
of function selection, the first argument has not been converted
to a buffer object. It's just an int or uint, but you don't want
to convert THAT argument, because that implies converting the
buffer object itself. Rather, you can convert other arguments,
but want to stay in the same "family" of functions. E.g, if
the first interlocked arg is a uint, use only the uint family,
never the int family, you can convert the other args as you please.
This PR allows making such opcode and arg specific choices by
passing the op and arg to the convertible lambda. The code in
the new test "hlsl.promote.atomic.frag" would not compile without
this change, but it must compile.
Also, it provides better handling of downconversions (to "worse"
types), which are permitted in HLSL. The existing method of
selecting upconversions is unchanged, but if that doesn't find
any valid ones, then it will allow downconversions. In effect
this always uses an upconversion if there is one.
This PR handles implicit promotions for intrinsics when there is no exact match,
such as for example clamp(int, bool, float). In this case the int and bool will
be promoted to a float, and the clamp(float, float, float) form used.
These promotions can be mixed with shape conversions, e.g, clamp(int, bool2, float2).
Output conversions are handled either via the existing addOutputArgumentConversion
function, which this PR generalizes to handle either aggregates or unaries, or by
intrinsic decomposition. If there are methods or intrinsics to be decomposed,
then decomposition is responsible for any output conversions, which turns out to
happen automatically in all current cases. This can be revisited once inout
conversions are in place.
Some cases of actual ambiguity were fixed in several tests, e.g, spv.register.autoassign.*
Some intrinsics with only uint versions were expanded to signed ints natively, where the
underlying AST and SPIR-V supports that. E.g, countbits. This avoids extraneous
conversion nodes.
A new function promoteAggregate is added, and used by findFunction. This is essentially
a generalization of the "promote 1st or 2nd arg" algorithm in promoteBinary.
The actual selection proceeds in three steps, as described in the comments in
hlslParseContext::findFunction:
1. Attempt an exact match. If found, use it.
2. If not, obtain the operator from step 1, and promote arguments.
3. Re-select the intrinsic overload from the results of step 2.
HLSL has keywords for various interpolation modifiers such as "linear",
"centroid", "sample", etc. Of these, "sample" appears to be special,
as it is also accepted as an identifier string, where the others are not.
This PR adds this ability, so the construct "int sample = 42;" no longer
produces a compilation error.
New test = hlsl.identifier.sample.frag
This PR adds a CreateParseContext() fn analogous to CreateBuiltInParseables(),
to create a language specific built in parser. (This code was present before
but not encapsualted in a fn). This can now be used to create a source language
specific parser for builtins.
Along with this, the code creating HLSL intrinsic prototypes can now produce
them in HLSL syntax, rather than GLSL syntax. This relaxes certain prior
restrictions at the parser level. Lower layers (e.g, SPIR-V) may still have
such restrictions, such as around Nx1 matrices: this code does not impact
that.
This PR also fleshes out matrix types for bools and ints, both of which were
partially in place before. This was easier than maintaining the restrictions
in the HLSL prototype generator to avoid creating protoypes with those types.
Many tests change because the result type from intrinsics moves from "global"
to "temp".
Several new tests are added for the new types.
Previously, an error was thrown when assigning a float1 to a scalar float,
or similar for other basic types. This allows that.
Also, this allows calling functions accepting scalars with float1 params,
so for example sin(float1) will work. This is a minor change in
HlslParseContext::findFunction().
Rationalizes the entire tracking of the linker object nodes, effecting
GLSL, HLSL, and SPIR-V, to allow tracked objects to be fully edited before
their type snapshot for linker objects.
Should only effect things when the rest of the AST contained no reference to
the symbol, because normal AST nodes were not stale. Also will only effect such
objects when their types were edited.
This PR adds:
1. The "u" register class for RW* objects.
2. --shift-image-bindings (== --sib), analogous to --shift-texture-bindings etc.
3. Case insensitive reg classes.
4. Tests for above.
These HLSL types are guaranteed to have at least the given number of bits, but may have more.
min{16,10}float is mapped to EbtFloat at medium precision -> SPIRV RelaxedPrecision
min{16,12}int and min16uint are mapped to mediump -> SPIR-V RelaxedPrecision
This PR adds handling of the numthreads attribute for compute shaders, as well as a general
infrastructure for returning attribute values from acceptAttributes, which may be needed in other
cases, e.g, unroll(x), or merely to know if some attribute without params was given.
A map of enum values from TAttributeType to TIntermAggregate nodes is built and returned. It
can be queried with operator[] on the map. In the future there may be a need to also handle
strings (e.g, for patchconstantfunc), and those can be easily added into the class if needed.
New test is in hlsl.numthreads.comp.
This PR only changes a few lines of code, but is subtle.
In HLSL, comparison operators (<,>,<=,>=,==,!=) operate component-wise
when given a vector operand. If a whole vector equality or inequality is
desired, then all() or any() can be used on the resulting bool vector.
This PR enables this change. Existing shape conversion is used when
one of the two arguments is a vector and one is a scalar.
Some existing HLSL tests had assumed == and != meant vector-wise
instead of component-wise comparisons. These tests have been changed
to add an explicit any() or all() to the test source. This verifably
does not change the final SPIR-V binary relative to the old behavior
for == and !=. The AST does change for the (now explicit, formerly
implicit) any() and all(). Also, a few tests changes where they
previously had the return type wrong, e.g, from a vec < vec comparison
in hlsl.shapeConv.frag.
Promotion of comparison opcodes to vector forms
(EOpEqual->EOpVectorEqual) is handled in promoteBinary(), as is setting
the proper vector type of the result.
EOpVectorEqual and EOpVectorNotEqual are now accepted as either
aggregate or binary nodes, similar to how the other operators are
handled. Partial support already existed for this: it has been
fleshed out in the printing functions in intermOut.cpp.
There is an existing defect around shape conversion with 1-vectors, but
that is orthogonal to this PR and not addressed by it.
This fixes defects as follows:
1. handleLvalue could be called on a non-L-value, and it shouldn't be.
2. HLSL allows unary negation on non-bool values. TUnaryOperator::promote
can now promote other types (e.g, int, float) to bool for this op.
3. HLSL allows binary logical operations (&&, ||) on arbitrary types, similar
(2).
4. HLSL allows mod operation on arbitrary types, which will be promoted.
E.g, int % float -> float % float.
This PR sets the TQualifier layoutFormat according to the HLSL image type.
For instance:
RWTexture1D <float2> g_tTex1df2;
becomes ElfRg32f. Similar on Buffers, e.g, Buffer<float4> mybuffer;
The return type for image and buffer loads is now taken from the storage format.
Also, the qualifier for the return type is now (properly) a temp, not a global.
All the underpinnings are there; this just parses multiple array dimensions
and passes them through to the existing mechanisms.
Also, minor comment fixes, and add a new test for multi-dim arrays.
This commit adds r-value support for RW textures and buffers.
Supported is:
- Function in parameter conversions
- conversion of rvalue use to imageLoad
There's a lot to do for RWTexture and RWBuffer, so it will be broken up into
several PRs. This is #1.
This adds RWTexture and RWBuffer support, with the following limitations:
* Only 4 component formats supported
* No operator[] yet
Those will be added in other PRs.
This PR supports declarations and the Load & GetDimensions methods. New tests are
added.
The gtest executable accepts a --test-root option to specify
a root directory for test files. It defaults to the Test directory
in the source tree from which the executable is built.
For example, this lets us run test exectuables built with MinGW on Linux
on a Windows machine with its own copy of the source tree.
If a member-wise assignment from a non-flattened struct to a flattened struct sees a complex R-value
(not a symbol), it now creates a temporary to hold that value, to avoid repeating the R-value.
This avoids, e.g, duplicating a whole function call. Also, it avoids re-using the AST node, making a
new one for each member inside the member loop.
The latter (re-use of AST node) was also an issue in the GetDimensions intrinsic decomposition,
so this PR fixes that one too.
Previously, the binding auto-mapping facility was free to use any unused
binding. This change makes auto-bindings use the same offset value as
explicit bindings.
In HLSL array sizes need not be provided explicitly in all circumstances.
For example, this is valid (note no number between the [ ]):
// no explicit array size
uniform float g_array[] = { 1, 2, 3, 4, 5 };
This PR does not attempt to validate most invalid cases.
A new test is added to verify the resulting linker objects.
This PR adds a GLSL equivalent to the HLSL binding mapping tests for offsets and auto-numbering.
The shaders are as equivalent as possible. The bindings of the base results match exactly
between the two.
Fix for two defects as follows:
- The IO mapping traverser was not setting inVisit, and would skip some AST nodes.
Depending on the order of nodes, this could have prevented the binding from
showing up in the generated SPIR-V.
- If a uniform array was flattened, each of the flattened scalars from the array
is still a (now-scalar) uniform. It was being converted to a temporary.
This checkin adds a --flatten-uniform-arrays option which can break
uniform arrays of samplers, textures, or UBOs up into individual
scalars named (e.g) myarray[0], myarray[1], etc. These appear as
individual linkage objects.
Code notes:
- shouldFlatten internally calls shouldFlattenIO, and shouldFlattenUniform,
but is the only flattening query directly called.
- flattenVariable will handle structs or arrays (but not yet arrayed structs;
this is tested an an error is generated).
- There's some error checking around unhandled situations. E.g, flattening
uniform arrays with initializer lists is not implemented.
- This piggybacks on as much of the existing mechanism for struct flattening
as it can. E.g, it uses the same flattenMap, and the same
flattenAccess() method.
- handleAssign() has been generalized to cope with either structs or arrays.
- Extended test infrastructure to test flattening ability.
This PR adds the ability to offset sampler, texture, and UBO bindings
from provided base bindings, and to auto-number bindings that are not
provided with explicit register numbers. The mechanism works as
follows:
- Offsets may be given on the command line for all stages, or
individually for one or more single stages, in which case the
offset will be auto-selected according to the stage being
compiled. There is also an API to set them. The new command line
options are --shift-sampler-binding, --shift-texture-binding, and
--shift-UBO-binding.
- Uniforms which are not given explicit bindings in the source code
are auto-numbered if and only if they are in live code as
determined by the algorithm used to build the reflection
database, and the --auto-map-bindings option is given. This auto-numbering
avoids using any binding slots which were explicitly provided in
the code, whether or not that explicit use was live. E.g, "uniform
Texture1D foo : register(t3);" with --shift-texture-binding 10 will
reserve binding 13, whether or not foo is used in live code.
- Shorter synonyms for the command line options are available. See
the --help output.
The testing infrastructure is slightly extended to allow use of the
binding offset API, and two new tests spv.register.(no)autoassign.frag are
added for comparing the resulting SPIR-V.
Addresses issue #304 and issue #307 by replacing unmatched type OpStores with
per-member copies. Covers assignment statements and most argument passing, but
does not yet cover r-value-based argument passing.
This would look ahead for a second #, for token pasting, and if not
found, backup one token. This is fine, unless at the end of line,
which would backup the #, rather than the look ahead.
Also, this allows turning on the error check for a failed assigment
when parsing.
This makes 39 HLSL tests have a working assignment that was previously
silently dropped, due to lack of this functionality.
Added -C option to request cascading errors. By default, will exit early,
to avoid all error-recovery-based crashes.
This works by simulating end-of-file in input on first error, so no
need for exception handling, or stack unwinding, or any complex error
checking/handling to get out of the stack.
This is used by OpenGL, but not Vulkan.
Includes:
- atomicCounter, atomicIncrement, atomicCounterDecrement
- atomic_uint layout-offset checking
- AtomicStorage capability
The grammar now accepts type casts, like "(int)x", but that
has to be disambiguated from "(a + b)", needed deeper lookahead
and backing up than what existed so far.
This checkin implements about half of the HLSL intrinsics for a subset of their
entire type support (but a useful subset). The uncommented lines in
TBuiltInParseablesHlsl::identifyBuiltIns shows which are connected.
Note: This required adding a new test mode to see the AST for vulkan tests.
This also required reworking some deeper parts of type creation, regarding
when storage qualification and constness is deduced bottom-up or dictated
top-down.
This adds solution folders that properly group gtest/glslang/hlsl.
This also marks gtest options as advanced so they don't show up
in cmake-gui by default.
Previously GlslangToSpv() reported missing/TBD functionalities
by directly writing to stdout using printf. That could cause
problems to callers of GlslangToSpv(). This patch cleans up
the error reporting logic in GlslangToSpv(), TGlslangToSpvTraverser,
and spv::Builder a little bit to use ostringstream.
Also fixed the usage of GlslangToSpv() in GTest fixtures to
capture warnings/errors reported when translating AST to SPIR-V.
- Add new keyword int64_t/uint64_t/i64vec/u64vec.
- Support 64-bit integer literals (dec/hex/oct).
- Support built-in operators for 64-bit integer type.
- Add implicit and explicit type conversion for 64-bit integer type.
- Add new built-in functions defined in this extension.
The existing test harness is a homemade shell script. All the tests
and the expected results are written in plain text files. The harness
just reads in a test, invoke the glslangValidator binary on it, and
compare the result with the golden file. All tests are kinda
integration tests.
This patch add Google Test as an external project, which provides a
new harness for reading shader source files, compile to SPIR-V, and
then compare with the expected output.