This obsoletes WIP PR #704, which was built on the pre entry point wrapping master. New version
here uses entry point wrapping.
This is a limited implementation of tessellation shaders. In particular, the following are not functional,
and will be added as separate stages to reduce the size of each PR.
* patchconstantfunctions accepting per-control-point input values, such as
const OutputPatch <hs_out_t, 3> cpv are not implemented.
* patchconstantfunctions whose signature requires an aggregate input type such as
a structure containing builtin variables. Code to synthesize such calls is not
yet present.
These restrictions will be relaxed as soon as possible. Simple cases can compile now: see for example
Test/hulsl.hull.1.tesc - e.g, writing to inner and outer tessellation factors.
PCF invocation is synthesized as an entry point epilogue protected behind a barrier and a test on
invocation ID == 0. If there is an existing invocation ID variable it will be used, otherwise one is
added to the linkage. The PCF and the shader EP interfaces are unioned and builtins appearing in
the PCF but not the EP are also added to the linkage and synthesized as shader inputs.
Parameter matching to (eventually arbitrary) PCF signatures is by builtin variable type. Any user
variables in the PCF signature will result in an error. Overloaded PCF functions will also result in
an error.
[domain()], [partitioning()], [outputtopology()], [outputcontrolpoints()], and [patchconstantfunction()]
attributes to the shader entry point are in place, with the exception of the Pow2 partitioning mode.
This removes pervertex output blocks, in favor of using only
loose variables. The pervertex blocks are not required and were
only partly implemented, and were adding some complication.
This change goes with wrap-entry-point.
Structs are split to remove builtin members to create valid SPIR-V. In this
process, an outer structure array dimension may be propegated onto the
now-removed builtin variables. For example, a mystruct[3].position ->
position[3]. The copy between the split and unsplit forms would handle
this in some cases, but not if the array dimension was at different levels
of aggregate.
It now does this, but may not handle arbitrary composite types. Unclear if
that has any semantic meaning for builtins though.
This introduces parallel types for IO-type containing aggregates used as
non-entry point function parameters or return types, or declared as variables.
Further uses of the same original type will share the same sanitized deep
structure.
This is intended to be used with the wrap-entry-point branch.
Previously, a type graph would turn into a type tree. That is,
a deep node that is shared would have multiple copies made.
This is important when creating IO and non-IO versions of deep types.
This needs some render testing, but is destined to be part of master.
This also leads to a variety of other simplifications.
- IO are global symbols, so only need one list of linkage nodes (deferred)
- no longer need parse-context-wide 'inEntryPoint' state, entry-point is localized
- several parts of splitting/flattening are now localized
When copying split types with mixtures of user variables and buitins,
where the builtins are extracted, there is a parallel structures traversal.
The traversal was not obtaining the derefenced types in the array case.
- Add support for invocation functions with "InclusiveScan" and
"ExclusiveScan" modes.
- Add support for invocation functions taking int64/uint64/doube/float16
as inout data types.
doc.cpp: Add capabilities, scope to the opcodes. Add opcode and
capability strings.
GLSL.ext.KHR.h: Add extension
string.
GlslangToSpv.cpp: Fix handling of opcodes to generate
appropriate SPIR-V.
spirv.hpp: Add capability and opcode
enums.
spv.shaderGroupVote.comp.out: Update SPIR-V output for test
shader.
Since EOpMatrixSwizzle is a new op, existing back-ends only work when the
front end first decomposes it to other operations. So far, this is only
being done for simple assignment into matrix swizzles.
This partially addressess issue #670, for when the matrix swizzle
degenerates to a component or column: m[c], m[c][r] (where HLSL
swaps rows and columns for user's view).
An error message is given for the arbitrary cases not covered.
These cases will work for arbitrary use of l-values.
Future work will handle more arbitrary swizzles, which might
not work as arbitrary l-values.
This encapsulates where the string could overflow, removing 40 lines
of fragile code. It also improves handling of numbers that are too long.
There are a couple of open issues that could related to this function
being more rational (locale dependence, 1.#INF).
(Still adding tests: do not commit)
This fixes PR #632 so that:
(a) The 4 PerVertex builtins are added to an interface block for all stages except fragment.
(b) Other builtin qualified variables are added as "loose" linkage members.
(c) Arrayness from the PerVertex builtins is moved to the PerVertex block.
(d) Sometimes, two PerVertex blocks are created, one for in, one for out (e.g, for some GS that
both reads and writes a Position)
Any previous use would only be for "", which would probably mean changing
include(...) -> includeLocal(...)
See comments about includeLocal() being an additional search over
includeSystem(), not a superset search.
This also removed ForbidIncluder, as
- the message in ForbidIncluder was redundant: error results were
already returned to the caller, which then gives the error it
wants to
- there is a trivial default implementation that a subclass can
override any subset of (I still like abstract base classes though)
- trying to get less implementation out of the interface file anyway
Reads and write syntax to UAV objects is turned into EOpImageLoad/Store
operations. This translation did not support destination swizzles,
for example, "mybuffer[tc].zyx = 3;", so such statements would fail to
compile. Now they work.
Parial updates are explicitly prohibited.
New test: hlsl.rw.swizzle.frag