llvm-mirror/lib/CodeGen/AsmPrinter/DwarfWriter.cpp

4310 lines
141 KiB
C++
Raw Normal View History

//===-- llvm/CodeGen/DwarfWriter.cpp - Dwarf Framework ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing dwarf info into asm files.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
2007-01-29 23:40:33 +00:00
#include "llvm/Target/TargetOptions.h"
#include <ostream>
#include <string>
using namespace llvm;
using namespace llvm::dwarf;
static RegisterPass<DwarfWriter>
X("dwarfwriter", "DWARF Information Writer");
char DwarfWriter::ID = 0;
2006-02-27 12:43:29 +00:00
namespace llvm {
//===----------------------------------------------------------------------===//
/// Configuration values for initial hash set sizes (log2).
///
static const unsigned InitDiesSetSize = 9; // 512
static const unsigned InitAbbreviationsSetSize = 9; // 512
static const unsigned InitValuesSetSize = 9; // 512
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// Forward declarations.
///
2006-02-27 12:43:29 +00:00
class DIE;
class DIEValue;
//===----------------------------------------------------------------------===//
/// Utility routines.
///
/// getGlobalVariablesUsing - Return all of the GlobalVariables which have the
/// specified value in their initializer somewhere.
static void
getGlobalVariablesUsing(Value *V, std::vector<GlobalVariable*> &Result) {
// Scan though value users.
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) {
// If the user is a GlobalVariable then add to result.
Result.push_back(GV);
} else if (Constant *C = dyn_cast<Constant>(*I)) {
// If the user is a constant variable then scan its users
getGlobalVariablesUsing(C, Result);
}
}
}
/// getGlobalVariablesUsing - Return all of the GlobalVariables that use the
/// named GlobalVariable.
static void
getGlobalVariablesUsing(Module &M, const std::string &RootName,
std::vector<GlobalVariable*> &Result) {
std::vector<const Type*> FieldTypes;
FieldTypes.push_back(Type::Int32Ty);
FieldTypes.push_back(Type::Int32Ty);
// Get the GlobalVariable root.
GlobalVariable *UseRoot = M.getGlobalVariable(RootName,
StructType::get(FieldTypes));
// If present and linkonce then scan for users.
if (UseRoot && UseRoot->hasLinkOnceLinkage())
getGlobalVariablesUsing(UseRoot, Result);
}
/// getGlobalVariable - Return either a direct or cast Global value.
///
static GlobalVariable *getGlobalVariable(Value *V) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
return GV;
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::BitCast) {
return dyn_cast<GlobalVariable>(CE->getOperand(0));
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
for (unsigned int i=1; i<CE->getNumOperands(); i++) {
if (!CE->getOperand(i)->isNullValue())
return NULL;
}
return dyn_cast<GlobalVariable>(CE->getOperand(0));
}
}
return NULL;
}
//===----------------------------------------------------------------------===//
/// DWLabel - Labels are used to track locations in the assembler file.
/// Labels appear in the form @verbatim <prefix><Tag><Number> @endverbatim,
/// where the tag is a category of label (Ex. location) and number is a value
/// unique in that category.
class DWLabel {
public:
/// Tag - Label category tag. Should always be a staticly declared C string.
///
const char *Tag;
/// Number - Value to make label unique.
///
unsigned Number;
DWLabel(const char *T, unsigned N) : Tag(T), Number(N) {}
void Profile(FoldingSetNodeID &ID) const {
ID.AddString(std::string(Tag));
ID.AddInteger(Number);
}
#ifndef NDEBUG
void print(std::ostream *O) const {
if (O) print(*O);
}
void print(std::ostream &O) const {
O << "." << Tag;
if (Number) O << Number;
}
#endif
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEAbbrevData - Dwarf abbreviation data, describes the one attribute of a
/// Dwarf abbreviation.
2006-02-27 12:43:29 +00:00
class DIEAbbrevData {
private:
/// Attribute - Dwarf attribute code.
///
unsigned Attribute;
/// Form - Dwarf form code.
///
unsigned Form;
2006-02-27 12:43:29 +00:00
public:
DIEAbbrevData(unsigned A, unsigned F)
: Attribute(A)
, Form(F)
{}
// Accessors.
2006-02-27 12:43:29 +00:00
unsigned getAttribute() const { return Attribute; }
unsigned getForm() const { return Form; }
/// Profile - Used to gather unique data for the abbreviation folding set.
2006-02-27 12:43:29 +00:00
///
void Profile(FoldingSetNodeID &ID)const {
ID.AddInteger(Attribute);
ID.AddInteger(Form);
}
2006-02-27 12:43:29 +00:00
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEAbbrev - Dwarf abbreviation, describes the organization of a debug
/// information object.
class DIEAbbrev : public FoldingSetNode {
2006-02-27 12:43:29 +00:00
private:
/// Tag - Dwarf tag code.
///
unsigned Tag;
/// Unique number for node.
///
unsigned Number;
/// ChildrenFlag - Dwarf children flag.
///
unsigned ChildrenFlag;
/// Data - Raw data bytes for abbreviation.
///
SmallVector<DIEAbbrevData, 8> Data;
2006-02-27 12:43:29 +00:00
public:
DIEAbbrev(unsigned T, unsigned C)
: Tag(T)
2006-02-27 12:43:29 +00:00
, ChildrenFlag(C)
, Data()
{}
~DIEAbbrev() {}
// Accessors.
2006-02-27 12:43:29 +00:00
unsigned getTag() const { return Tag; }
unsigned getNumber() const { return Number; }
2006-02-27 12:43:29 +00:00
unsigned getChildrenFlag() const { return ChildrenFlag; }
const SmallVector<DIEAbbrevData, 8> &getData() const { return Data; }
void setTag(unsigned T) { Tag = T; }
2006-02-27 12:43:29 +00:00
void setChildrenFlag(unsigned CF) { ChildrenFlag = CF; }
void setNumber(unsigned N) { Number = N; }
2006-02-27 12:43:29 +00:00
/// AddAttribute - Adds another set of attribute information to the
/// abbreviation.
void AddAttribute(unsigned Attribute, unsigned Form) {
Data.push_back(DIEAbbrevData(Attribute, Form));
}
/// AddFirstAttribute - Adds a set of attribute information to the front
/// of the abbreviation.
void AddFirstAttribute(unsigned Attribute, unsigned Form) {
Data.insert(Data.begin(), DIEAbbrevData(Attribute, Form));
}
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(Tag);
ID.AddInteger(ChildrenFlag);
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i)
Data[i].Profile(ID);
}
2006-02-27 12:43:29 +00:00
/// Emit - Print the abbreviation using the specified Dwarf writer.
///
void Emit(const DwarfDebug &DD) const;
2006-02-27 12:43:29 +00:00
#ifndef NDEBUG
void print(std::ostream *O) {
if (O) print(*O);
}
2006-02-27 12:43:29 +00:00
void print(std::ostream &O);
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DIE - A structured debug information entry. Has an abbreviation which
/// describes it's organization.
class DIE : public FoldingSetNode {
protected:
/// Abbrev - Buffer for constructing abbreviation.
///
DIEAbbrev Abbrev;
/// Offset - Offset in debug info section.
///
unsigned Offset;
/// Size - Size of instance + children.
///
unsigned Size;
/// Children DIEs.
///
std::vector<DIE *> Children;
/// Attributes values.
///
SmallVector<DIEValue*, 32> Values;
public:
explicit DIE(unsigned Tag)
: Abbrev(Tag, DW_CHILDREN_no)
, Offset(0)
, Size(0)
, Children()
, Values()
{}
virtual ~DIE();
// Accessors.
DIEAbbrev &getAbbrev() { return Abbrev; }
unsigned getAbbrevNumber() const {
return Abbrev.getNumber();
}
unsigned getTag() const { return Abbrev.getTag(); }
unsigned getOffset() const { return Offset; }
unsigned getSize() const { return Size; }
const std::vector<DIE *> &getChildren() const { return Children; }
SmallVector<DIEValue*, 32> &getValues() { return Values; }
void setTag(unsigned Tag) { Abbrev.setTag(Tag); }
void setOffset(unsigned O) { Offset = O; }
void setSize(unsigned S) { Size = S; }
/// AddValue - Add a value and attributes to a DIE.
///
void AddValue(unsigned Attribute, unsigned Form, DIEValue *Value) {
Abbrev.AddAttribute(Attribute, Form);
Values.push_back(Value);
}
/// SiblingOffset - Return the offset of the debug information entry's
/// sibling.
unsigned SiblingOffset() const { return Offset + Size; }
/// AddSiblingOffset - Add a sibling offset field to the front of the DIE.
///
void AddSiblingOffset();
/// AddChild - Add a child to the DIE.
///
void AddChild(DIE *Child) {
Abbrev.setChildrenFlag(DW_CHILDREN_yes);
Children.push_back(Child);
}
/// Detach - Detaches objects connected to it after copying.
///
void Detach() {
Children.clear();
}
/// Profile - Used to gather unique data for the value folding set.
///
void Profile(FoldingSetNodeID &ID) ;
#ifndef NDEBUG
void print(std::ostream *O, unsigned IncIndent = 0) {
if (O) print(*O, IncIndent);
}
void print(std::ostream &O, unsigned IncIndent = 0);
void dump();
#endif
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEValue - A debug information entry value.
///
class DIEValue : public FoldingSetNode {
2006-02-27 12:43:29 +00:00
public:
enum {
isInteger,
isString,
isLabel,
isAsIsLabel,
isSectionOffset,
2006-02-27 12:43:29 +00:00
isDelta,
isEntry,
isBlock
2006-02-27 12:43:29 +00:00
};
/// Type - Type of data stored in the value.
///
unsigned Type;
explicit DIEValue(unsigned T)
: Type(T)
{}
2006-02-27 12:43:29 +00:00
virtual ~DIEValue() {}
// Accessors
unsigned getType() const { return Type; }
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *) { return true; }
2006-02-27 12:43:29 +00:00
/// EmitValue - Emit value via the Dwarf writer.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form) = 0;
2006-02-27 12:43:29 +00:00
/// SizeOf - Return the size of a value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const = 0;
/// Profile - Used to gather unique data for the value folding set.
///
virtual void Profile(FoldingSetNodeID &ID) = 0;
#ifndef NDEBUG
void print(std::ostream *O) {
if (O) print(*O);
}
virtual void print(std::ostream &O) = 0;
void dump();
#endif
2006-02-27 12:43:29 +00:00
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DWInteger - An integer value DIE.
///
2006-02-27 12:43:29 +00:00
class DIEInteger : public DIEValue {
private:
uint64_t Integer;
2006-02-27 12:43:29 +00:00
public:
explicit DIEInteger(uint64_t I) : DIEValue(isInteger), Integer(I) {}
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEInteger *) { return true; }
static bool classof(const DIEValue *I) { return I->Type == isInteger; }
/// BestForm - Choose the best form for integer.
///
static unsigned BestForm(bool IsSigned, uint64_t Integer) {
if (IsSigned) {
if ((char)Integer == (signed)Integer) return DW_FORM_data1;
if ((short)Integer == (signed)Integer) return DW_FORM_data2;
if ((int)Integer == (signed)Integer) return DW_FORM_data4;
} else {
if ((unsigned char)Integer == Integer) return DW_FORM_data1;
if ((unsigned short)Integer == Integer) return DW_FORM_data2;
if ((unsigned int)Integer == Integer) return DW_FORM_data4;
}
return DW_FORM_data8;
}
2006-02-27 12:43:29 +00:00
/// EmitValue - Emit integer of appropriate size.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
2006-02-27 12:43:29 +00:00
/// SizeOf - Determine size of integer value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, unsigned Integer) {
ID.AddInteger(isInteger);
ID.AddInteger(Integer);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Integer); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Int: " << (int64_t)Integer
<< " 0x" << std::hex << Integer << std::dec;
}
#endif
2006-02-27 12:43:29 +00:00
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEString - A string value DIE.
///
class DIEString : public DIEValue {
public:
2006-02-27 12:43:29 +00:00
const std::string String;
explicit DIEString(const std::string &S) : DIEValue(isString), String(S) {}
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEString *) { return true; }
static bool classof(const DIEValue *S) { return S->Type == isString; }
2006-02-27 12:43:29 +00:00
/// EmitValue - Emit string value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
2006-02-27 12:43:29 +00:00
/// SizeOf - Determine size of string value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const {
return String.size() + sizeof(char); // sizeof('\0');
}
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const std::string &String) {
ID.AddInteger(isString);
ID.AddString(String);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, String); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Str: \"" << String << "\"";
}
#endif
2006-02-27 12:43:29 +00:00
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEDwarfLabel - A Dwarf internal label expression DIE.
2006-02-27 12:43:29 +00:00
//
class DIEDwarfLabel : public DIEValue {
public:
2006-02-27 12:43:29 +00:00
const DWLabel Label;
explicit DIEDwarfLabel(const DWLabel &L) : DIEValue(isLabel), Label(L) {}
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEDwarfLabel *) { return true; }
static bool classof(const DIEValue *L) { return L->Type == isLabel; }
2006-02-27 12:43:29 +00:00
/// EmitValue - Emit label value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
2006-02-27 12:43:29 +00:00
/// SizeOf - Determine size of label value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &Label) {
ID.AddInteger(isLabel);
Label.Profile(ID);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Lbl: ";
Label.print(O);
}
#endif
2006-02-27 12:43:29 +00:00
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEObjectLabel - A label to an object in code or data.
2006-02-27 12:43:29 +00:00
//
class DIEObjectLabel : public DIEValue {
public:
2006-02-27 12:43:29 +00:00
const std::string Label;
explicit DIEObjectLabel(const std::string &L)
: DIEValue(isAsIsLabel), Label(L) {}
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEObjectLabel *) { return true; }
static bool classof(const DIEValue *L) { return L->Type == isAsIsLabel; }
2006-02-27 12:43:29 +00:00
/// EmitValue - Emit label value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
2006-02-27 12:43:29 +00:00
/// SizeOf - Determine size of label value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const std::string &Label) {
ID.AddInteger(isAsIsLabel);
ID.AddString(Label);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Obj: " << Label;
}
#endif
2006-02-27 12:43:29 +00:00
};
//===----------------------------------------------------------------------===//
/// DIESectionOffset - A section offset DIE.
//
class DIESectionOffset : public DIEValue {
public:
const DWLabel Label;
const DWLabel Section;
bool IsEH : 1;
bool UseSet : 1;
DIESectionOffset(const DWLabel &Lab, const DWLabel &Sec,
bool isEH = false, bool useSet = true)
: DIEValue(isSectionOffset), Label(Lab), Section(Sec),
IsEH(isEH), UseSet(useSet) {}
// Implement isa/cast/dyncast.
static bool classof(const DIESectionOffset *) { return true; }
static bool classof(const DIEValue *D) { return D->Type == isSectionOffset; }
/// EmitValue - Emit section offset.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of section offset value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &Label,
const DWLabel &Section) {
ID.AddInteger(isSectionOffset);
Label.Profile(ID);
Section.Profile(ID);
// IsEH and UseSet are specific to the Label/Section that we will emit
// the offset for; so Label/Section are enough for uniqueness.
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label, Section); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Off: ";
Label.print(O);
O << "-";
Section.print(O);
O << "-" << IsEH << "-" << UseSet;
}
#endif
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// DIEDelta - A simple label difference DIE.
///
class DIEDelta : public DIEValue {
public:
2006-02-27 12:43:29 +00:00
const DWLabel LabelHi;
const DWLabel LabelLo;
2006-02-27 12:43:29 +00:00
DIEDelta(const DWLabel &Hi, const DWLabel &Lo)
: DIEValue(isDelta), LabelHi(Hi), LabelLo(Lo) {}
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEDelta *) { return true; }
static bool classof(const DIEValue *D) { return D->Type == isDelta; }
2006-02-27 12:43:29 +00:00
/// EmitValue - Emit delta value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
2006-02-27 12:43:29 +00:00
/// SizeOf - Determine size of delta value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &LabelHi,
const DWLabel &LabelLo) {
ID.AddInteger(isDelta);
LabelHi.Profile(ID);
LabelLo.Profile(ID);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, LabelHi, LabelLo); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Del: ";
LabelHi.print(O);
O << "-";
LabelLo.print(O);
}
#endif
2006-02-27 12:43:29 +00:00
};
//===----------------------------------------------------------------------===//
/// DIEntry - A pointer to another debug information entry. An instance of this
/// class can also be used as a proxy for a debug information entry not yet
/// defined (ie. types.)
class DIEntry : public DIEValue {
public:
2006-02-27 12:43:29 +00:00
DIE *Entry;
explicit DIEntry(DIE *E) : DIEValue(isEntry), Entry(E) {}
2006-02-27 12:43:29 +00:00
// Implement isa/cast/dyncast.
static bool classof(const DIEntry *) { return true; }
static bool classof(const DIEValue *E) { return E->Type == isEntry; }
/// EmitValue - Emit debug information entry offset.
2006-02-27 12:43:29 +00:00
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of debug information entry in bytes.
2006-02-27 12:43:29 +00:00
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const {
return sizeof(int32_t);
}
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, DIE *Entry) {
ID.AddInteger(isEntry);
ID.AddPointer(Entry);
}
virtual void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(isEntry);
if (Entry) {
ID.AddPointer(Entry);
} else {
ID.AddPointer(this);
}
}
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Die: 0x" << std::hex << (intptr_t)Entry << std::dec;
}
#endif
2006-02-27 12:43:29 +00:00
};
//===----------------------------------------------------------------------===//
/// DIEBlock - A block of values. Primarily used for location expressions.
//
class DIEBlock : public DIEValue, public DIE {
public:
unsigned Size; // Size in bytes excluding size header.
DIEBlock()
: DIEValue(isBlock)
, DIE(0)
, Size(0)
{}
~DIEBlock() {
}
// Implement isa/cast/dyncast.
static bool classof(const DIEBlock *) { return true; }
static bool classof(const DIEValue *E) { return E->Type == isBlock; }
/// ComputeSize - calculate the size of the block.
///
unsigned ComputeSize(DwarfDebug &DD);
/// BestForm - Choose the best form for data.
///
unsigned BestForm() const {
if ((unsigned char)Size == Size) return DW_FORM_block1;
if ((unsigned short)Size == Size) return DW_FORM_block2;
if ((unsigned int)Size == Size) return DW_FORM_block4;
return DW_FORM_block;
}
/// EmitValue - Emit block data.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of block data in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
virtual void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(isBlock);
DIE::Profile(ID);
}
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Blk: ";
DIE::print(O, 5);
}
#endif
};
2006-02-27 12:43:29 +00:00
//===----------------------------------------------------------------------===//
/// CompileUnit - This dwarf writer support class manages information associate
/// with a source file.
class CompileUnit {
2006-02-27 12:43:29 +00:00
private:
/// ID - File identifier for source.
///
unsigned ID;
/// Die - Compile unit debug information entry.
///
DIE *Die;
/// GVToDieMap - Tracks the mapping of unit level debug informaton
/// variables to debug information entries.
DenseMap<GlobalVariable *, DIE *> GVToDieMap;
2006-02-27 12:43:29 +00:00
/// GVToDIEntryMap - Tracks the mapping of unit level debug informaton
/// descriptors to debug information entries using a DIEntry proxy.
DenseMap<GlobalVariable *, DIEntry *> GVToDIEntryMap;
2006-02-27 12:43:29 +00:00
/// Globals - A map of globally visible named entities for this unit.
2006-02-27 12:43:29 +00:00
///
std::map<std::string, DIE *> Globals;
/// DiesSet - Used to uniquely define dies within the compile unit.
2006-02-27 12:43:29 +00:00
///
FoldingSet<DIE> DiesSet;
/// Dies - List of all dies in the compile unit.
2006-02-27 12:43:29 +00:00
///
std::vector<DIE *> Dies;
public:
CompileUnit(unsigned I, DIE *D)
: ID(I), Die(D), GVToDieMap(),
GVToDIEntryMap(), Globals(), DiesSet(InitDiesSetSize), Dies()
{}
~CompileUnit() {
delete Die;
for (unsigned i = 0, N = Dies.size(); i < N; ++i)
delete Dies[i];
}
// Accessors.
unsigned getID() const { return ID; }
DIE* getDie() const { return Die; }
std::map<std::string, DIE *> &getGlobals() { return Globals; }
2006-02-27 12:43:29 +00:00
/// hasContent - Return true if this compile unit has something to write out.
///
bool hasContent() const {
return !Die->getChildren().empty();
}
/// AddGlobal - Add a new global entity to the compile unit.
2006-02-27 12:43:29 +00:00
///
void AddGlobal(const std::string &Name, DIE *Die) {
Globals[Name] = Die;
}
/// getDieMapSlotFor - Returns the debug information entry map slot for the
/// specified debug variable.
DIE *&getDieMapSlotFor(GlobalVariable *GV) {
return GVToDieMap[GV];
}
/// getDIEntrySlotFor - Returns the debug information entry proxy slot for the
/// specified debug variable.
DIEntry *&getDIEntrySlotFor(GlobalVariable *GV) {
return GVToDIEntryMap[GV];
}
/// AddDie - Adds or interns the DIE to the compile unit.
///
DIE *AddDie(DIE &Buffer) {
FoldingSetNodeID ID;
Buffer.Profile(ID);
void *Where;
DIE *Die = DiesSet.FindNodeOrInsertPos(ID, Where);
if (!Die) {
Die = new DIE(Buffer);
DiesSet.InsertNode(Die, Where);
this->Die->AddChild(Die);
Buffer.Detach();
}
return Die;
}
2006-02-27 12:43:29 +00:00
};
//===----------------------------------------------------------------------===//
/// Dwarf - Emits general Dwarf directives.
///
class Dwarf {
protected:
//===--------------------------------------------------------------------===//
// Core attributes used by the Dwarf writer.
//
//
/// O - Stream to .s file.
///
raw_ostream &O;
/// Asm - Target of Dwarf emission.
///
AsmPrinter *Asm;
/// TAI - Target asm information.
const TargetAsmInfo *TAI;
/// TD - Target data.
const TargetData *TD;
/// RI - Register Information.
const TargetRegisterInfo *RI;
/// M - Current module.
///
Module *M;
/// MF - Current machine function.
///
MachineFunction *MF;
/// MMI - Collected machine module information.
///
MachineModuleInfo *MMI;
/// SubprogramCount - The running count of functions being compiled.
///
unsigned SubprogramCount;
/// Flavor - A unique string indicating what dwarf producer this is, used to
/// unique labels.
const char * const Flavor;
unsigned SetCounter;
Dwarf(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T,
const char *flavor)
: O(OS)
, Asm(A)
, TAI(T)
, TD(Asm->TM.getTargetData())
, RI(Asm->TM.getRegisterInfo())
, M(NULL)
, MF(NULL)
, MMI(NULL)
, SubprogramCount(0)
, Flavor(flavor)
, SetCounter(1)
{
}
public:
//===--------------------------------------------------------------------===//
// Accessors.
//
AsmPrinter *getAsm() const { return Asm; }
MachineModuleInfo *getMMI() const { return MMI; }
const TargetAsmInfo *getTargetAsmInfo() const { return TAI; }
const TargetData *getTargetData() const { return TD; }
void PrintRelDirective(bool Force32Bit = false, bool isInSection = false)
const {
if (isInSection && TAI->getDwarfSectionOffsetDirective())
O << TAI->getDwarfSectionOffsetDirective();
else if (Force32Bit || TD->getPointerSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
}
/// PrintLabelName - Print label name in form used by Dwarf writer.
///
void PrintLabelName(DWLabel Label) const {
PrintLabelName(Label.Tag, Label.Number);
}
void PrintLabelName(const char *Tag, unsigned Number) const {
O << TAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
}
void PrintLabelName(const char *Tag, unsigned Number,
const char *Suffix) const {
O << TAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
O << Suffix;
}
/// EmitLabel - Emit location label for internal use by Dwarf.
///
void EmitLabel(DWLabel Label) const {
EmitLabel(Label.Tag, Label.Number);
}
void EmitLabel(const char *Tag, unsigned Number) const {
PrintLabelName(Tag, Number);
O << ":\n";
}
/// EmitReference - Emit a reference to a label.
///
void EmitReference(DWLabel Label, bool IsPCRelative = false,
bool Force32Bit = false) const {
EmitReference(Label.Tag, Label.Number, IsPCRelative, Force32Bit);
}
void EmitReference(const char *Tag, unsigned Number,
bool IsPCRelative = false, bool Force32Bit = false) const {
PrintRelDirective(Force32Bit);
PrintLabelName(Tag, Number);
if (IsPCRelative) O << "-" << TAI->getPCSymbol();
}
void EmitReference(const std::string &Name, bool IsPCRelative = false,
bool Force32Bit = false) const {
PrintRelDirective(Force32Bit);
O << Name;
if (IsPCRelative) O << "-" << TAI->getPCSymbol();
}
/// EmitDifference - Emit the difference between two labels. Some
/// assemblers do not behave with absolute expressions with data directives,
/// so there is an option (needsSet) to use an intermediary set expression.
void EmitDifference(DWLabel LabelHi, DWLabel LabelLo,
bool IsSmall = false) {
EmitDifference(LabelHi.Tag, LabelHi.Number,
LabelLo.Tag, LabelLo.Number,
IsSmall);
}
void EmitDifference(const char *TagHi, unsigned NumberHi,
const char *TagLo, unsigned NumberLo,
bool IsSmall = false) {
if (TAI->needsSet()) {
O << "\t.set\t";
PrintLabelName("set", SetCounter, Flavor);
O << ",";
PrintLabelName(TagHi, NumberHi);
O << "-";
PrintLabelName(TagLo, NumberLo);
O << "\n";
PrintRelDirective(IsSmall);
PrintLabelName("set", SetCounter, Flavor);
++SetCounter;
} else {
PrintRelDirective(IsSmall);
PrintLabelName(TagHi, NumberHi);
O << "-";
PrintLabelName(TagLo, NumberLo);
}
}
void EmitSectionOffset(const char* Label, const char* Section,
unsigned LabelNumber, unsigned SectionNumber,
bool IsSmall = false, bool isEH = false,
bool useSet = true) {
bool printAbsolute = false;
if (isEH)
printAbsolute = TAI->isAbsoluteEHSectionOffsets();
else
printAbsolute = TAI->isAbsoluteDebugSectionOffsets();
if (TAI->needsSet() && useSet) {
O << "\t.set\t";
PrintLabelName("set", SetCounter, Flavor);
O << ",";
PrintLabelName(Label, LabelNumber);
if (!printAbsolute) {
O << "-";
PrintLabelName(Section, SectionNumber);
}
O << "\n";
PrintRelDirective(IsSmall);
PrintLabelName("set", SetCounter, Flavor);
++SetCounter;
} else {
PrintRelDirective(IsSmall, true);
PrintLabelName(Label, LabelNumber);
if (!printAbsolute) {
O << "-";
PrintLabelName(Section, SectionNumber);
}
}
}
/// EmitFrameMoves - Emit frame instructions to describe the layout of the
/// frame.
void EmitFrameMoves(const char *BaseLabel, unsigned BaseLabelID,
const std::vector<MachineMove> &Moves, bool isEH) {
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
bool IsLocal = BaseLabel && strcmp(BaseLabel, "label") == 0;
for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
const MachineMove &Move = Moves[i];
unsigned LabelID = Move.getLabelID();
if (LabelID) {
LabelID = MMI->MappedLabel(LabelID);
// Throw out move if the label is invalid.
if (!LabelID) continue;
}
const MachineLocation &Dst = Move.getDestination();
const MachineLocation &Src = Move.getSource();
// Advance row if new location.
if (BaseLabel && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
Asm->EmitInt8(DW_CFA_advance_loc4);
Asm->EOL("DW_CFA_advance_loc4");
EmitDifference("label", LabelID, BaseLabel, BaseLabelID, true);
Asm->EOL();
BaseLabelID = LabelID;
BaseLabel = "label";
IsLocal = true;
}
// If advancing cfa.
if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
if (!Src.isReg()) {
if (Src.getReg() == MachineLocation::VirtualFP) {
Asm->EmitInt8(DW_CFA_def_cfa_offset);
Asm->EOL("DW_CFA_def_cfa_offset");
} else {
Asm->EmitInt8(DW_CFA_def_cfa);
Asm->EOL("DW_CFA_def_cfa");
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), isEH));
Asm->EOL("Register");
}
int Offset = -Src.getOffset();
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
assert(0 && "Machine move no supported yet.");
}
} else if (Src.isReg() &&
Src.getReg() == MachineLocation::VirtualFP) {
if (Dst.isReg()) {
Asm->EmitInt8(DW_CFA_def_cfa_register);
Asm->EOL("DW_CFA_def_cfa_register");
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), isEH));
Asm->EOL("Register");
} else {
assert(0 && "Machine move no supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getReg(), isEH);
int Offset = Dst.getOffset() / stackGrowth;
if (Offset < 0) {
Asm->EmitInt8(DW_CFA_offset_extended_sf);
Asm->EOL("DW_CFA_offset_extended_sf");
Asm->EmitULEB128Bytes(Reg);
Asm->EOL("Reg");
Asm->EmitSLEB128Bytes(Offset);
Asm->EOL("Offset");
} else if (Reg < 64) {
Asm->EmitInt8(DW_CFA_offset + Reg);
if (VerboseAsm)
Asm->EOL("DW_CFA_offset + Reg (" + utostr(Reg) + ")");
else
Asm->EOL();
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
Asm->EmitInt8(DW_CFA_offset_extended);
Asm->EOL("DW_CFA_offset_extended");
Asm->EmitULEB128Bytes(Reg);
Asm->EOL("Reg");
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
}
}
}
}
};
//===----------------------------------------------------------------------===//
/// SrcLineInfo - This class is used to record source line correspondence.
///
class SrcLineInfo {
unsigned Line; // Source line number.
unsigned Column; // Source column.
unsigned SourceID; // Source ID number.
unsigned LabelID; // Label in code ID number.
public:
SrcLineInfo(unsigned L, unsigned C, unsigned S, unsigned I)
: Line(L), Column(C), SourceID(S), LabelID(I) {}
// Accessors
unsigned getLine() const { return Line; }
unsigned getColumn() const { return Column; }
unsigned getSourceID() const { return SourceID; }
unsigned getLabelID() const { return LabelID; }
};
//===----------------------------------------------------------------------===//
/// SrcFileInfo - This class is used to track source information.
///
class SrcFileInfo {
unsigned DirectoryID; // Directory ID number.
std::string Name; // File name (not including directory.)
public:
SrcFileInfo(unsigned D, const std::string &N) : DirectoryID(D), Name(N) {}
// Accessors
unsigned getDirectoryID() const { return DirectoryID; }
const std::string &getName() const { return Name; }
/// operator== - Used by UniqueVector to locate entry.
///
bool operator==(const SrcFileInfo &SI) const {
return getDirectoryID() == SI.getDirectoryID() && getName() == SI.getName();
}
/// operator< - Used by UniqueVector to locate entry.
///
bool operator<(const SrcFileInfo &SI) const {
return getDirectoryID() < SI.getDirectoryID() ||
(getDirectoryID() == SI.getDirectoryID() && getName() < SI.getName());
}
};
//===----------------------------------------------------------------------===//
/// DbgVariable - This class is used to track local variable information.
///
class DbgVariable {
private:
DIVariable *Var; // Variable Descriptor.
unsigned FrameIndex; // Variable frame index.
public:
DbgVariable(DIVariable *V, unsigned I) : Var(V), FrameIndex(I) {}
// Accessors.
DIVariable *getVariable() const { return Var; }
unsigned getFrameIndex() const { return FrameIndex; }
};
//===----------------------------------------------------------------------===//
/// DbgScope - This class is used to track scope information.
///
class DbgScope {
private:
DbgScope *Parent; // Parent to this scope.
DIDescriptor Desc; // Debug info descriptor for scope.
// Either subprogram or block.
unsigned StartLabelID; // Label ID of the beginning of scope.
unsigned EndLabelID; // Label ID of the end of scope.
SmallVector<DbgScope *, 4> Scopes; // Scopes defined in scope.
SmallVector<DbgVariable *, 8> Variables;// Variables declared in scope.
public:
DbgScope(DbgScope *P, DIDescriptor D)
: Parent(P), Desc(D), StartLabelID(0), EndLabelID(0), Scopes(), Variables()
{}
~DbgScope() {
for (unsigned i = 0, N = Scopes.size(); i < N; ++i) delete Scopes[i];
for (unsigned j = 0, M = Variables.size(); j < M; ++j) delete Variables[j];
}
// Accessors.
DbgScope *getParent() const { return Parent; }
DIDescriptor getDesc() const { return Desc; }
unsigned getStartLabelID() const { return StartLabelID; }
unsigned getEndLabelID() const { return EndLabelID; }
SmallVector<DbgScope *, 4> &getScopes() { return Scopes; }
SmallVector<DbgVariable *, 8> &getVariables() { return Variables; }
void setStartLabelID(unsigned S) { StartLabelID = S; }
void setEndLabelID(unsigned E) { EndLabelID = E; }
/// AddScope - Add a scope to the scope.
///
void AddScope(DbgScope *S) { Scopes.push_back(S); }
/// AddVariable - Add a variable to the scope.
///
void AddVariable(DbgVariable *V) { Variables.push_back(V); }
};
//===----------------------------------------------------------------------===//
/// DwarfDebug - Emits Dwarf debug directives.
///
class DwarfDebug : public Dwarf {
private:
//===--------------------------------------------------------------------===//
// Attributes used to construct specific Dwarf sections.
//
/// CompileUnits - All the compile units involved in this build. The index
/// of each entry in this vector corresponds to the sources in MMI.
std::vector<CompileUnit *> CompileUnits;
DenseMap<Value *, CompileUnit *> DW_CUs;
/// AbbreviationsSet - Used to uniquely define abbreviations.
///
FoldingSet<DIEAbbrev> AbbreviationsSet;
/// Abbreviations - A list of all the unique abbreviations in use.
///
std::vector<DIEAbbrev *> Abbreviations;
/// ValuesSet - Used to uniquely define values.
///
// Directories - Uniquing vector for directories.
UniqueVector<std::string> Directories;
// SourceFiles - Uniquing vector for source files.
UniqueVector<SrcFileInfo> SrcFiles;
// Lines - List of of source line correspondence.
std::vector<SrcLineInfo> Lines;
FoldingSet<DIEValue> ValuesSet;
/// Values - A list of all the unique values in use.
///
std::vector<DIEValue *> Values;
/// StringPool - A UniqueVector of strings used by indirect references.
///
UniqueVector<std::string> StringPool;
/// SectionMap - Provides a unique id per text section.
///
UniqueVector<const Section*> SectionMap;
/// SectionSourceLines - Tracks line numbers per text section.
///
std::vector<std::vector<SrcLineInfo> > SectionSourceLines;
/// didInitial - Flag to indicate if initial emission has been done.
///
bool didInitial;
/// shouldEmit - Flag to indicate if debug information should be emitted.
///
bool shouldEmit;
// RootDbgScope - Top level scope for the current function.
//
DbgScope *RootDbgScope;
// DbgScopeMap - Tracks the scopes in the current function.
DenseMap<GlobalVariable *, DbgScope *> DbgScopeMap;
struct FunctionDebugFrameInfo {
unsigned Number;
std::vector<MachineMove> Moves;
FunctionDebugFrameInfo(unsigned Num, const std::vector<MachineMove> &M):
Number(Num), Moves(M) { }
};
std::vector<FunctionDebugFrameInfo> DebugFrames;
public:
/// ShouldEmitDwarf - Returns true if Dwarf declarations should be made.
///
bool ShouldEmitDwarf() const { return shouldEmit; }
/// AssignAbbrevNumber - Define a unique number for the abbreviation.
///
void AssignAbbrevNumber(DIEAbbrev &Abbrev) {
// Profile the node so that we can make it unique.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
// Check the set for priors.
DIEAbbrev *InSet = AbbreviationsSet.GetOrInsertNode(&Abbrev);
// If it's newly added.
if (InSet == &Abbrev) {
// Add to abbreviation list.
Abbreviations.push_back(&Abbrev);
// Assign the vector position + 1 as its number.
Abbrev.setNumber(Abbreviations.size());
} else {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
}
}
/// NewString - Add a string to the constant pool and returns a label.
///
DWLabel NewString(const std::string &String) {
unsigned StringID = StringPool.insert(String);
return DWLabel("string", StringID);
}
/// NewDIEntry - Creates a new DIEntry to be a proxy for a debug information
/// entry.
DIEntry *NewDIEntry(DIE *Entry = NULL) {
DIEntry *Value;
if (Entry) {
FoldingSetNodeID ID;
DIEntry::Profile(ID, Entry);
void *Where;
Value = static_cast<DIEntry *>(ValuesSet.FindNodeOrInsertPos(ID, Where));
if (Value) return Value;
Value = new DIEntry(Entry);
ValuesSet.InsertNode(Value, Where);
} else {
Value = new DIEntry(Entry);
}
Values.push_back(Value);
return Value;
}
/// SetDIEntry - Set a DIEntry once the debug information entry is defined.
///
void SetDIEntry(DIEntry *Value, DIE *Entry) {
Value->Entry = Entry;
// Add to values set if not already there. If it is, we merely have a
// duplicate in the values list (no harm.)
ValuesSet.GetOrInsertNode(Value);
}
/// AddUInt - Add an unsigned integer attribute data and value.
///
void AddUInt(DIE *Die, unsigned Attribute, unsigned Form, uint64_t Integer) {
if (!Form) Form = DIEInteger::BestForm(false, Integer);
FoldingSetNodeID ID;
DIEInteger::Profile(ID, Integer);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEInteger(Integer);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddSInt - Add an signed integer attribute data and value.
///
void AddSInt(DIE *Die, unsigned Attribute, unsigned Form, int64_t Integer) {
if (!Form) Form = DIEInteger::BestForm(true, Integer);
FoldingSetNodeID ID;
DIEInteger::Profile(ID, (uint64_t)Integer);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEInteger(Integer);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddString - Add a std::string attribute data and value.
///
void AddString(DIE *Die, unsigned Attribute, unsigned Form,
const std::string &String) {
FoldingSetNodeID ID;
DIEString::Profile(ID, String);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEString(String);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddLabel - Add a Dwarf label attribute data and value.
///
void AddLabel(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Label) {
FoldingSetNodeID ID;
DIEDwarfLabel::Profile(ID, Label);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEDwarfLabel(Label);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddObjectLabel - Add an non-Dwarf label attribute data and value.
///
void AddObjectLabel(DIE *Die, unsigned Attribute, unsigned Form,
const std::string &Label) {
FoldingSetNodeID ID;
DIEObjectLabel::Profile(ID, Label);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEObjectLabel(Label);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddSectionOffset - Add a section offset label attribute data and value.
///
void AddSectionOffset(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Label, const DWLabel &Section,
bool isEH = false, bool useSet = true) {
FoldingSetNodeID ID;
DIESectionOffset::Profile(ID, Label, Section);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIESectionOffset(Label, Section, isEH, useSet);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddDelta - Add a label delta attribute data and value.
///
void AddDelta(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Hi, const DWLabel &Lo) {
FoldingSetNodeID ID;
DIEDelta::Profile(ID, Hi, Lo);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEDelta(Hi, Lo);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddDIEntry - Add a DIE attribute data and value.
///
void AddDIEntry(DIE *Die, unsigned Attribute, unsigned Form, DIE *Entry) {
Die->AddValue(Attribute, Form, NewDIEntry(Entry));
}
/// AddBlock - Add block data.
///
void AddBlock(DIE *Die, unsigned Attribute, unsigned Form, DIEBlock *Block) {
Block->ComputeSize(*this);
FoldingSetNodeID ID;
Block->Profile(ID);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = Block;
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
} else {
// Already exists, reuse the previous one.
delete Block;
Block = cast<DIEBlock>(Value);
}
Die->AddValue(Attribute, Block->BestForm(), Value);
}
private:
/// AddSourceLine - Add location information to specified debug information
/// entry.
void AddSourceLine(DIE *Die, DIVariable *V) {
unsigned FileID = 0;
unsigned Line = V->getLineNumber();
if (V->getVersion() < DIDescriptor::Version7) {
// Version6 or earlier. Use compile unit info to get file id.
CompileUnit *Unit = FindCompileUnit(V->getCompileUnit());
FileID = Unit->getID();
} else {
// Version7 or newer, use filename and directory info from DIVariable
// directly.
unsigned DID = Directories.idFor(V->getDirectory());
FileID = SrcFiles.idFor(SrcFileInfo(DID, V->getFilename()));
}
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
/// AddSourceLine - Add location information to specified debug information
/// entry.
void AddSourceLine(DIE *Die, DIGlobal *G) {
unsigned FileID = 0;
unsigned Line = G->getLineNumber();
if (G->getVersion() < DIDescriptor::Version7) {
// Version6 or earlier. Use compile unit info to get file id.
CompileUnit *Unit = FindCompileUnit(G->getCompileUnit());
FileID = Unit->getID();
} else {
// Version7 or newer, use filename and directory info from DIGlobal
// directly.
unsigned DID = Directories.idFor(G->getDirectory());
FileID = SrcFiles.idFor(SrcFileInfo(DID, G->getFilename()));
}
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
void AddSourceLine(DIE *Die, DIType *G) {
unsigned FileID = 0;
unsigned Line = G->getLineNumber();
if (G->getVersion() < DIDescriptor::Version7) {
// Version6 or earlier. Use compile unit info to get file id.
CompileUnit *Unit = FindCompileUnit(G->getCompileUnit());
FileID = Unit->getID();
} else {
// Version7 or newer, use filename and directory info from DIGlobal
// directly.
unsigned DID = Directories.idFor(G->getDirectory());
FileID = SrcFiles.idFor(SrcFileInfo(DID, G->getFilename()));
}
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
/// AddAddress - Add an address attribute to a die based on the location
/// provided.
void AddAddress(DIE *Die, unsigned Attribute,
const MachineLocation &Location) {
unsigned Reg = RI->getDwarfRegNum(Location.getReg(), false);
DIEBlock *Block = new DIEBlock();
if (Location.isReg()) {
if (Reg < 32) {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_reg0 + Reg);
} else {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_regx);
AddUInt(Block, 0, DW_FORM_udata, Reg);
}
} else {
if (Reg < 32) {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_breg0 + Reg);
} else {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_bregx);
AddUInt(Block, 0, DW_FORM_udata, Reg);
}
AddUInt(Block, 0, DW_FORM_sdata, Location.getOffset());
}
AddBlock(Die, Attribute, 0, Block);
}
/// AddBasicType - Add a new basic type attribute to the specified entity.
///
void AddBasicType(DIE *Entity, CompileUnit *Unit,
const std::string &Name,
unsigned Encoding, unsigned Size) {
DIE Buffer(DW_TAG_base_type);
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
AddUInt(&Buffer, DW_AT_encoding, DW_FORM_data1, Encoding);
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
DIE *BasicTypeDie = Unit->AddDie(Buffer);
AddDIEntry(Entity, DW_AT_type, DW_FORM_ref4, BasicTypeDie);
}
/// AddPointerType - Add a new pointer type attribute to the specified entity.
///
void AddPointerType(DIE *Entity, CompileUnit *Unit, const std::string &Name) {
DIE Buffer(DW_TAG_pointer_type);
AddUInt(&Buffer, DW_AT_byte_size, 0, TD->getPointerSize());
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
DIE *PointerTypeDie = Unit->AddDie(Buffer);
AddDIEntry(Entity, DW_AT_type, DW_FORM_ref4, PointerTypeDie);
}
/// AddType - Add a new type attribute to the specified entity.
void AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty) {
if (Ty.isNull()) {
AddBasicType(Entity, DW_Unit, "", DW_ATE_signed, sizeof(int32_t));
return;
}
// Check for pre-existence.
DIEntry *&Slot = DW_Unit->getDIEntrySlotFor(Ty.getGV());
// If it exists then use the existing value.
if (Slot) {
Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot);
return;
}
// Set up proxy.
Slot = NewDIEntry();
// Construct type.
DIE Buffer(DW_TAG_base_type);
if (Ty.isBasicType(Ty.getTag()))
ConstructTypeDIE(DW_Unit, Buffer, DIBasicType(Ty.getGV()));
else if (Ty.isDerivedType(Ty.getTag()))
ConstructTypeDIE(DW_Unit, Buffer, DIDerivedType(Ty.getGV()));
else {
assert (Ty.isCompositeType(Ty.getTag()) && "Unknown kind of DIType");
ConstructTypeDIE(DW_Unit, Buffer, DICompositeType(Ty.getGV()));
}
// Add debug information entry to entity and unit.
DIE *Die = DW_Unit->AddDie(Buffer);
SetDIEntry(Slot, Die);
Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot);
}
/// ConstructTypeDIE - Construct basic type die from DIBasicType.
void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIBasicType BTy) {
// Get core information.
const std::string &Name = BTy.getName();
Buffer.setTag(DW_TAG_base_type);
AddUInt(&Buffer, DW_AT_encoding, DW_FORM_data1, BTy.getEncoding());
// Add name if not anonymous or intermediate type.
if (!Name.empty())
AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
uint64_t Size = BTy.getSizeInBits() >> 3;
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
}
/// ConstructTypeDIE - Construct derived type die from DIDerivedType.
void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIDerivedType DTy) {
// Get core information.
const std::string &Name = DTy.getName();
uint64_t Size = DTy.getSizeInBits() >> 3;
unsigned Tag = DTy.getTag();
// FIXME - Workaround for templates.
if (Tag == DW_TAG_inheritance) Tag = DW_TAG_reference_type;
Buffer.setTag(Tag);
// Map to main type, void will not have a type.
DIType FromTy = DTy.getTypeDerivedFrom();
AddType(DW_Unit, &Buffer, FromTy);
// Add name if not anonymous or intermediate type.
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
// Add size if non-zero (derived types might be zero-sized.)
if (Size)
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
// Add source line info if available and TyDesc is not a forward
// declaration.
// FIXME - Enable this. if (!DTy.isForwardDecl())
// FIXME - Enable this. AddSourceLine(&Buffer, *DTy);
}
/// ConstructTypeDIE - Construct type DIE from DICompositeType.
void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DICompositeType CTy) {
// Get core information.
const std::string &Name = CTy.getName();
uint64_t Size = CTy.getSizeInBits() >> 3;
unsigned Tag = CTy.getTag();
switch (Tag) {
case DW_TAG_vector_type:
case DW_TAG_array_type:
ConstructArrayTypeDIE(DW_Unit, Buffer, &CTy);
break;
//FIXME - Enable this.
// case DW_TAG_enumeration_type:
// DIArray Elements = CTy.getTypeArray();
// // Add enumerators to enumeration type.
// for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i)
// ConstructEnumTypeDIE(Buffer, &Elements.getElement(i));
// break;
case DW_TAG_subroutine_type:
{
// Add prototype flag.
AddUInt(&Buffer, DW_AT_prototyped, DW_FORM_flag, 1);
DIArray Elements = CTy.getTypeArray();
// Add return type.
DIDescriptor RTy = Elements.getElement(0);
AddType(DW_Unit, &Buffer, DIType(RTy.getGV()));
//AddType(DW_Unit, &Buffer, Elements.getElement(0));
// Add arguments.
for (unsigned i = 1, N = Elements.getNumElements(); i < N; ++i) {
DIE *Arg = new DIE(DW_TAG_formal_parameter);
DIDescriptor Ty = Elements.getElement(i);
AddType(DW_Unit, &Buffer, DIType(Ty.getGV()));
Buffer.AddChild(Arg);
}
}
break;
case DW_TAG_structure_type:
case DW_TAG_union_type:
{
// Add elements to structure type.
DIArray Elements = CTy.getTypeArray();
// A forward struct declared type may not have elements available.
if (Elements.isNull())
break;
// Add elements to structure type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.getTag() == dwarf::DW_TAG_subprogram)
ConstructFieldTypeDIE(DW_Unit, Buffer, DISubprogram(Element.getGV()));
else if (Element.getTag() == dwarf::DW_TAG_variable)
ConstructFieldTypeDIE(DW_Unit, Buffer,
DIGlobalVariable(Element.getGV()));
else {
DIDerivedType DT = DIDerivedType(Element.getGV());
assert (DT.isDerivedType(DT.getTag()) && "Unexpected strcut element");
ConstructFieldTypeDIE(DW_Unit, Buffer, DT);
}
}
}
break;
default:
break;
}
// Add name if not anonymous or intermediate type.
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
// Add size if non-zero (derived types might be zero-sized.)
if (Size)
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
else {
// Add zero size even if it is not a forward declaration.
// FIXME - Enable this.
// if (!CTy.isDefinition())
// AddUInt(&Buffer, DW_AT_declaration, DW_FORM_flag, 1);
// else
// AddUInt(&Buffer, DW_AT_byte_size, 0, 0);
}
// Add source line info if available and TyDesc is not a forward
// declaration.
// FIXME - Enable this.
// if (CTy.isForwardDecl())
// AddSourceLine(&Buffer, *CTy);
}
// ConstructSubrangeDIE - Construct subrange DIE from DISubrange.
void ConstructSubrangeDIE (DIE &Buffer, DISubrange SR, DIE *IndexTy) {
int64_t L = SR.getLo();
int64_t H = SR.getHi();
DIE *DW_Subrange = new DIE(DW_TAG_subrange_type);
if (L != H) {
AddDIEntry(DW_Subrange, DW_AT_type, DW_FORM_ref4, IndexTy);
if (L)
AddSInt(DW_Subrange, DW_AT_lower_bound, 0, L);
AddSInt(DW_Subrange, DW_AT_upper_bound, 0, H);
}
Buffer.AddChild(DW_Subrange);
}
/// ConstructArrayTypeDIE - Construct array type DIE from DICompositeType.
void ConstructArrayTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DICompositeType *CTy) {
Buffer.setTag(DW_TAG_array_type);
if (CTy->getTag() == DW_TAG_vector_type)
AddUInt(&Buffer, DW_AT_GNU_vector, DW_FORM_flag, 1);
DIArray Elements = CTy->getTypeArray();
// FIXME - Enable this.
AddType(DW_Unit, &Buffer, CTy->getTypeDerivedFrom());
// Construct an anonymous type for index type.
DIE IdxBuffer(DW_TAG_base_type);
AddUInt(&IdxBuffer, DW_AT_byte_size, 0, sizeof(int32_t));
AddUInt(&IdxBuffer, DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
DIE *IndexTy = DW_Unit->AddDie(IdxBuffer);
// Add subranges to array type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.getTag() == dwarf::DW_TAG_subrange_type)
ConstructSubrangeDIE(Buffer, DISubrange(Element.getGV()), IndexTy);
}
}
/// ConstructEnumTypeDIE - Construct enum type DIE from
/// DIEnumerator.
void ConstructEnumTypeDIE(CompileUnit *DW_Unit,
DIE &Buffer, DIEnumerator *ETy) {
DIE *Enumerator = new DIE(DW_TAG_enumerator);
AddString(Enumerator, DW_AT_name, DW_FORM_string, ETy->getName());
int64_t Value = ETy->getEnumValue();
AddSInt(Enumerator, DW_AT_const_value, DW_FORM_sdata, Value);
Buffer.AddChild(Enumerator);
}
/// ConstructFieldTypeDIE - Construct variable DIE for a struct field.
void ConstructFieldTypeDIE(CompileUnit *DW_Unit,
DIE &Buffer, DIGlobalVariable V) {
DIE *VariableDie = new DIE(DW_TAG_variable);
const std::string &LinkageName = V.getLinkageName();
if (!LinkageName.empty())
AddString(VariableDie, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
// FIXME - Enable this. AddSourceLine(VariableDie, V);
AddType(DW_Unit, VariableDie, V.getType());
if (!V.isLocalToUnit())
AddUInt(VariableDie, DW_AT_external, DW_FORM_flag, 1);
AddUInt(VariableDie, DW_AT_declaration, DW_FORM_flag, 1);
Buffer.AddChild(VariableDie);
}
/// ConstructFieldTypeDIE - Construct subprogram DIE for a struct field.
void ConstructFieldTypeDIE(CompileUnit *DW_Unit,
DIE &Buffer, DISubprogram SP,
bool IsConstructor = false) {
DIE *Method = new DIE(DW_TAG_subprogram);
AddString(Method, DW_AT_name, DW_FORM_string, SP.getName());
const std::string &LinkageName = SP.getLinkageName();
if (!LinkageName.empty())
AddString(Method, DW_AT_MIPS_linkage_name, DW_FORM_string, LinkageName);
// FIXME - Enable this. AddSourceLine(Method, SP);
DICompositeType MTy = SP.getType();
DIArray Args = MTy.getTypeArray();
// Add Return Type.
if (!IsConstructor)
AddType(DW_Unit, Method, DIType(Args.getElement(0).getGV()));
// Add arguments.
for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
DIE *Arg = new DIE(DW_TAG_formal_parameter);
AddType(DW_Unit, Method, DIType(Args.getElement(i).getGV()));
AddUInt(Arg, DW_AT_artificial, DW_FORM_flag, 1); // ???
Method->AddChild(Arg);
}
if (!SP.isLocalToUnit())
AddUInt(Method, DW_AT_external, DW_FORM_flag, 1);
Buffer.AddChild(Method);
}
/// ConstructFieldTypeDIE - Construct derived type DIE for a struct field.
void ConstructFieldTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIDerivedType DTy) {
unsigned Tag = DTy.getTag();
DIE *MemberDie = new DIE(Tag);
if (!DTy.getName().empty())
AddString(MemberDie, DW_AT_name, DW_FORM_string, DTy.getName());
// FIXME - Enable this. AddSourceLine(MemberDie, DTy);
DIType FromTy = DTy.getTypeDerivedFrom();
AddType(DW_Unit, MemberDie, FromTy);
uint64_t Size = DTy.getSizeInBits();
uint64_t Offset = DTy.getOffsetInBits();
// FIXME Handle bitfields
// Add size.
AddUInt(MemberDie, DW_AT_bit_size, 0, Size);
// Add computation for offset.
DIEBlock *Block = new DIEBlock();
AddUInt(Block, 0, DW_FORM_data1, DW_OP_plus_uconst);
AddUInt(Block, 0, DW_FORM_udata, Offset >> 3);
AddBlock(MemberDie, DW_AT_data_member_location, 0, Block);
// FIXME Handle DW_AT_accessibility.
Buffer.AddChild(MemberDie);
}
/// FindCompileUnit - Get the compile unit for the given descriptor.
///
CompileUnit *FindCompileUnit(DICompileUnit Unit) {
CompileUnit *DW_Unit = DW_CUs[Unit.getGV()];
assert(DW_Unit && "Missing compile unit.");
return DW_Unit;
}
/// NewDbgScopeVariable - Create a new scope variable.
///
DIE *NewDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit) {
// Get the descriptor.
DIVariable *VD = DV->getVariable();
// Translate tag to proper Dwarf tag. The result variable is dropped for
// now.
unsigned Tag;
switch (VD->getTag()) {
case DW_TAG_return_variable: return NULL;
case DW_TAG_arg_variable: Tag = DW_TAG_formal_parameter; break;
case DW_TAG_auto_variable: // fall thru
default: Tag = DW_TAG_variable; break;
}
// Define variable debug information entry.
DIE *VariableDie = new DIE(Tag);
AddString(VariableDie, DW_AT_name, DW_FORM_string, VD->getName());
// Add source line info if available.
AddSourceLine(VariableDie, VD);
// Add variable type.
AddType(Unit, VariableDie, VD->getType());
// Add variable address.
MachineLocation Location;
Location.set(RI->getFrameRegister(*MF),
RI->getFrameIndexOffset(*MF, DV->getFrameIndex()));
AddAddress(VariableDie, DW_AT_location, Location);
return VariableDie;
}
/// getOrCreateScope - Returns the scope associated with the given descriptor.
///
DbgScope *getOrCreateScope(GlobalVariable *V) {
DbgScope *&Slot = DbgScopeMap[V];
if (!Slot) {
// FIXME - breaks down when the context is an inlined function.
DIDescriptor ParentDesc;
DIDescriptor Desc(V);
if (Desc.getTag() == dwarf::DW_TAG_lexical_block) {
DIBlock Block(V);
ParentDesc = Block.getContext();
}
DbgScope *Parent = ParentDesc.isNull() ?
NULL : getOrCreateScope(ParentDesc.getGV());
Slot = new DbgScope(Parent, Desc);
if (Parent) {
Parent->AddScope(Slot);
} else if (RootDbgScope) {
// FIXME - Add inlined function scopes to the root so we can delete
// them later. Long term, handle inlined functions properly.
RootDbgScope->AddScope(Slot);
} else {
// First function is top level function.
RootDbgScope = Slot;
}
}
return Slot;
}
/// ConstructDbgScope - Construct the components of a scope.
///
void ConstructDbgScope(DbgScope *ParentScope,
unsigned ParentStartID, unsigned ParentEndID,
DIE *ParentDie, CompileUnit *Unit) {
// Add variables to scope.
SmallVector<DbgVariable *, 8> &Variables = ParentScope->getVariables();
for (unsigned i = 0, N = Variables.size(); i < N; ++i) {
DIE *VariableDie = NewDbgScopeVariable(Variables[i], Unit);
if (VariableDie) ParentDie->AddChild(VariableDie);
}
// Add nested scopes.
SmallVector<DbgScope *, 4> &Scopes = ParentScope->getScopes();
for (unsigned j = 0, M = Scopes.size(); j < M; ++j) {
// Define the Scope debug information entry.
DbgScope *Scope = Scopes[j];
// FIXME - Ignore inlined functions for the time being.
if (!Scope->getParent()) continue;
unsigned StartID = MMI->MappedLabel(Scope->getStartLabelID());
unsigned EndID = MMI->MappedLabel(Scope->getEndLabelID());
// Ignore empty scopes.
if (StartID == EndID && StartID != 0) continue;
if (Scope->getScopes().empty() && Scope->getVariables().empty()) continue;
if (StartID == ParentStartID && EndID == ParentEndID) {
// Just add stuff to the parent scope.
ConstructDbgScope(Scope, ParentStartID, ParentEndID, ParentDie, Unit);
} else {
DIE *ScopeDie = new DIE(DW_TAG_lexical_block);
// Add the scope bounds.
if (StartID) {
AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("label", StartID));
} else {
AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
}
if (EndID) {
AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("label", EndID));
} else {
AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
}
// Add the scope contents.
ConstructDbgScope(Scope, StartID, EndID, ScopeDie, Unit);
ParentDie->AddChild(ScopeDie);
}
}
}
/// ConstructRootDbgScope - Construct the scope for the subprogram.
///
void ConstructRootDbgScope(DbgScope *RootScope) {
// Exit if there is no root scope.
if (!RootScope) return;
DIDescriptor Desc = RootScope->getDesc();
if (Desc.isNull())
return;
// Get the subprogram debug information entry.
DISubprogram SPD(Desc.getGV());
// Get the compile unit context.
CompileUnit *Unit = FindCompileUnit(SPD.getCompileUnit());
// Get the subprogram die.
DIE *SPDie = Unit->getDieMapSlotFor(SPD.getGV());
assert(SPDie && "Missing subprogram descriptor");
// Add the function bounds.
AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, DW_AT_frame_base, Location);
ConstructDbgScope(RootScope, 0, 0, SPDie, Unit);
}
/// ConstructDefaultDbgScope - Construct a default scope for the subprogram.
///
void ConstructDefaultDbgScope(MachineFunction *MF) {
// Find the correct subprogram descriptor.
std::string SPName = "llvm.dbg.subprograms";
std::vector<GlobalVariable*> Result;
getGlobalVariablesUsing(*M, SPName, Result);
for (std::vector<GlobalVariable *>::iterator I = Result.begin(),
E = Result.end(); I != E; ++I) {
DISubprogram *SPD = new DISubprogram(*I);
if (SPD->getName() == MF->getFunction()->getName()) {
// Get the compile unit context.
CompileUnit *Unit = FindCompileUnit(SPD->getCompileUnit());
// Get the subprogram die.
DIE *SPDie = Unit->getDieMapSlotFor(SPD->getGV());
assert(SPDie && "Missing subprogram descriptor");
// Add the function bounds.
AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, DW_AT_frame_base, Location);
return;
}
}
#if 0
// FIXME: This is causing an abort because C++ mangled names are compared
// with their unmangled counterparts. See PR2885. Don't do this assert.
assert(0 && "Couldn't find DIE for machine function!");
#endif
}
/// EmitInitial - Emit initial Dwarf declarations. This is necessary for cc
/// tools to recognize the object file contains Dwarf information.
void EmitInitial() {
// Check to see if we already emitted intial headers.
if (didInitial) return;
didInitial = true;
// Dwarf sections base addresses.
if (TAI->doesDwarfRequireFrameSection()) {
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitLabel("section_debug_frame", 0);
}
Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
EmitLabel("section_info", 0);
Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
EmitLabel("section_abbrev", 0);
Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
EmitLabel("section_aranges", 0);
Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection());
EmitLabel("section_macinfo", 0);
Asm->SwitchToDataSection(TAI->getDwarfLineSection());
EmitLabel("section_line", 0);
Asm->SwitchToDataSection(TAI->getDwarfLocSection());
EmitLabel("section_loc", 0);
Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
EmitLabel("section_pubnames", 0);
Asm->SwitchToDataSection(TAI->getDwarfStrSection());
EmitLabel("section_str", 0);
Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
EmitLabel("section_ranges", 0);
Asm->SwitchToSection(TAI->getTextSection());
EmitLabel("text_begin", 0);
Asm->SwitchToSection(TAI->getDataSection());
EmitLabel("data_begin", 0);
}
/// EmitDIE - Recusively Emits a debug information entry.
///
void EmitDIE(DIE *Die) {
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
Asm->EOL();
// Emit the code (index) for the abbreviation.
Asm->EmitULEB128Bytes(AbbrevNumber);
if (VerboseAsm)
Asm->EOL(std::string("Abbrev [" +
utostr(AbbrevNumber) +
"] 0x" + utohexstr(Die->getOffset()) +
":0x" + utohexstr(Die->getSize()) + " " +
TagString(Abbrev->getTag())));
else
Asm->EOL();
SmallVector<DIEValue*, 32> &Values = Die->getValues();
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev->getData();
// Emit the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
unsigned Attr = AbbrevData[i].getAttribute();
unsigned Form = AbbrevData[i].getForm();
assert(Form && "Too many attributes for DIE (check abbreviation)");
switch (Attr) {
case DW_AT_sibling: {
Asm->EmitInt32(Die->SiblingOffset());
break;
}
default: {
// Emit an attribute using the defined form.
Values[i]->EmitValue(*this, Form);
break;
}
}
Asm->EOL(AttributeString(Attr));
}
// Emit the DIE children if any.
if (Abbrev->getChildrenFlag() == DW_CHILDREN_yes) {
const std::vector<DIE *> &Children = Die->getChildren();
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
EmitDIE(Children[j]);
}
Asm->EmitInt8(0); Asm->EOL("End Of Children Mark");
}
}
/// SizeAndOffsetDie - Compute the size and offset of a DIE.
///
unsigned SizeAndOffsetDie(DIE *Die, unsigned Offset, bool Last) {
// Get the children.
const std::vector<DIE *> &Children = Die->getChildren();
// If not last sibling and has children then add sibling offset attribute.
if (!Last && !Children.empty()) Die->AddSiblingOffset();
// Record the abbreviation.
AssignAbbrevNumber(Die->getAbbrev());
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
// Set DIE offset
Die->setOffset(Offset);
// Start the size with the size of abbreviation code.
Offset += TargetAsmInfo::getULEB128Size(AbbrevNumber);
const SmallVector<DIEValue*, 32> &Values = Die->getValues();
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev->getData();
// Size the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
// Size attribute value.
Offset += Values[i]->SizeOf(*this, AbbrevData[i].getForm());
}
// Size the DIE children if any.
if (!Children.empty()) {
assert(Abbrev->getChildrenFlag() == DW_CHILDREN_yes &&
"Children flag not set");
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
Offset = SizeAndOffsetDie(Children[j], Offset, (j + 1) == M);
}
// End of children marker.
Offset += sizeof(int8_t);
}
Die->setSize(Offset - Die->getOffset());
return Offset;
}
/// SizeAndOffsets - Compute the size and offset of all the DIEs.
///
void SizeAndOffsets() {
// Process base compile unit.
for (DenseMap<Value *, CompileUnit *>::iterator CI = DW_CUs.begin(),
CE = DW_CUs.end(); CI != CE; ++CI) {
CompileUnit *Unit = CI->second;
// Compute size of compile unit header
unsigned Offset = sizeof(int32_t) + // Length of Compilation Unit Info
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t); // Pointer Size (in bytes)
SizeAndOffsetDie(Unit->getDie(), Offset, true);
}
}
/// EmitDebugInfo - Emit the debug info section.
///
void EmitDebugInfo() {
// Start debug info section.
Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
for (DenseMap<Value *, CompileUnit *>::iterator CI = DW_CUs.begin(),
CE = DW_CUs.end(); CI != CE; ++CI) {
CompileUnit *Unit = CI->second;
DIE *Die = Unit->getDie();
// Emit the compile units header.
EmitLabel("info_begin", Unit->getID());
// Emit size of content not including length itself
unsigned ContentSize = Die->getSize() +
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t) + // Pointer Size (in bytes)
sizeof(int32_t); // FIXME - extra pad for gdb bug.
Asm->EmitInt32(ContentSize); Asm->EOL("Length of Compilation Unit Info");
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number");
EmitSectionOffset("abbrev_begin", "section_abbrev", 0, 0, true, false);
Asm->EOL("Offset Into Abbrev. Section");
Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Address Size (in bytes)");
EmitDIE(Die);
// FIXME - extra padding for gdb bug.
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
EmitLabel("info_end", Unit->getID());
Asm->EOL();
}
}
/// EmitAbbreviations - Emit the abbreviation section.
///
void EmitAbbreviations() const {
// Check to see if it is worth the effort.
if (!Abbreviations.empty()) {
// Start the debug abbrev section.
Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
EmitLabel("abbrev_begin", 0);
// For each abbrevation.
for (unsigned i = 0, N = Abbreviations.size(); i < N; ++i) {
// Get abbreviation data
const DIEAbbrev *Abbrev = Abbreviations[i];
// Emit the abbrevations code (base 1 index.)
Asm->EmitULEB128Bytes(Abbrev->getNumber());
Asm->EOL("Abbreviation Code");
// Emit the abbreviations data.
Abbrev->Emit(*this);
Asm->EOL();
}
// Mark end of abbreviations.
Asm->EmitULEB128Bytes(0); Asm->EOL("EOM(3)");
EmitLabel("abbrev_end", 0);
Asm->EOL();
}
}
/// EmitEndOfLineMatrix - Emit the last address of the section and the end of
/// the line matrix.
///
void EmitEndOfLineMatrix(unsigned SectionEnd) {
// Define last address of section.
Asm->EmitInt8(0); Asm->EOL("Extended Op");
Asm->EmitInt8(TD->getPointerSize() + 1); Asm->EOL("Op size");
Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address");
EmitReference("section_end", SectionEnd); Asm->EOL("Section end label");
// Mark end of matrix.
Asm->EmitInt8(0); Asm->EOL("DW_LNE_end_sequence");
Asm->EmitULEB128Bytes(1); Asm->EOL();
Asm->EmitInt8(1); Asm->EOL();
}
/// EmitDebugLines - Emit source line information.
///
void EmitDebugLines() {
// If the target is using .loc/.file, the assembler will be emitting the
// .debug_line table automatically.
if (TAI->hasDotLocAndDotFile())
return;
// Minimum line delta, thus ranging from -10..(255-10).
const int MinLineDelta = -(DW_LNS_fixed_advance_pc + 1);
// Maximum line delta, thus ranging from -10..(255-10).
const int MaxLineDelta = 255 + MinLineDelta;
// Start the dwarf line section.
Asm->SwitchToDataSection(TAI->getDwarfLineSection());
// Construct the section header.
EmitDifference("line_end", 0, "line_begin", 0, true);
Asm->EOL("Length of Source Line Info");
EmitLabel("line_begin", 0);
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number");
EmitDifference("line_prolog_end", 0, "line_prolog_begin", 0, true);
Asm->EOL("Prolog Length");
EmitLabel("line_prolog_begin", 0);
Asm->EmitInt8(1); Asm->EOL("Minimum Instruction Length");
Asm->EmitInt8(1); Asm->EOL("Default is_stmt_start flag");
Asm->EmitInt8(MinLineDelta); Asm->EOL("Line Base Value (Special Opcodes)");
Asm->EmitInt8(MaxLineDelta); Asm->EOL("Line Range Value (Special Opcodes)");
Asm->EmitInt8(-MinLineDelta); Asm->EOL("Special Opcode Base");
// Line number standard opcode encodings argument count
Asm->EmitInt8(0); Asm->EOL("DW_LNS_copy arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_pc arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_line arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_file arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_column arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_negate_stmt arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_set_basic_block arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_const_add_pc arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_fixed_advance_pc arg count");
// Emit directories.
for (unsigned DirectoryID = 1, NDID = Directories.size();
DirectoryID <= NDID; ++DirectoryID) {
Asm->EmitString(Directories[DirectoryID]); Asm->EOL("Directory");
}
Asm->EmitInt8(0); Asm->EOL("End of directories");
// Emit files.
for (unsigned SourceID = 1, NSID = SrcFiles.size();
SourceID <= NSID; ++SourceID) {
const SrcFileInfo &SourceFile = SrcFiles[SourceID];
Asm->EmitString(SourceFile.getName());
Asm->EOL("Source");
Asm->EmitULEB128Bytes(SourceFile.getDirectoryID());
Asm->EOL("Directory #");
Asm->EmitULEB128Bytes(0);
Asm->EOL("Mod date");
Asm->EmitULEB128Bytes(0);
Asm->EOL("File size");
}
Asm->EmitInt8(0); Asm->EOL("End of files");
EmitLabel("line_prolog_end", 0);
// A sequence for each text section.
unsigned SecSrcLinesSize = SectionSourceLines.size();
for (unsigned j = 0; j < SecSrcLinesSize; ++j) {
// Isolate current sections line info.
const std::vector<SrcLineInfo> &LineInfos = SectionSourceLines[j];
if (VerboseAsm) {
const Section* S = SectionMap[j + 1];
Asm->EOL(std::string("Section ") + S->getName());
} else
Asm->EOL();
// Dwarf assumes we start with first line of first source file.
unsigned Source = 1;
unsigned Line = 1;
// Construct rows of the address, source, line, column matrix.
for (unsigned i = 0, N = LineInfos.size(); i < N; ++i) {
const SrcLineInfo &LineInfo = LineInfos[i];
unsigned LabelID = MMI->MappedLabel(LineInfo.getLabelID());
if (!LabelID) continue;
unsigned SourceID = LineInfo.getSourceID();
const SrcFileInfo &SourceFile = SrcFiles[SourceID];
unsigned DirectoryID = SourceFile.getDirectoryID();
if (VerboseAsm)
Asm->EOL(Directories[DirectoryID]
+ SourceFile.getName()
+ ":"
+ utostr_32(LineInfo.getLine()));
else
Asm->EOL();
// Define the line address.
Asm->EmitInt8(0); Asm->EOL("Extended Op");
Asm->EmitInt8(TD->getPointerSize() + 1); Asm->EOL("Op size");
Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address");
EmitReference("label", LabelID); Asm->EOL("Location label");
// If change of source, then switch to the new source.
if (Source != LineInfo.getSourceID()) {
Source = LineInfo.getSourceID();
Asm->EmitInt8(DW_LNS_set_file); Asm->EOL("DW_LNS_set_file");
Asm->EmitULEB128Bytes(Source); Asm->EOL("New Source");
}
// If change of line.
if (Line != LineInfo.getLine()) {
// Determine offset.
int Offset = LineInfo.getLine() - Line;
int Delta = Offset - MinLineDelta;
// Update line.
Line = LineInfo.getLine();
// If delta is small enough and in range...
if (Delta >= 0 && Delta < (MaxLineDelta - 1)) {
// ... then use fast opcode.
Asm->EmitInt8(Delta - MinLineDelta); Asm->EOL("Line Delta");
} else {
// ... otherwise use long hand.
Asm->EmitInt8(DW_LNS_advance_line); Asm->EOL("DW_LNS_advance_line");
Asm->EmitSLEB128Bytes(Offset); Asm->EOL("Line Offset");
Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy");
}
} else {
// Copy the previous row (different address or source)
Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy");
}
}
EmitEndOfLineMatrix(j + 1);
}
if (SecSrcLinesSize == 0)
// Because we're emitting a debug_line section, we still need a line
// table. The linker and friends expect it to exist. If there's nothing to
// put into it, emit an empty table.
EmitEndOfLineMatrix(1);
EmitLabel("line_end", 0);
Asm->EOL();
}
/// EmitCommonDebugFrame - Emit common frame info into a debug frame section.
///
void EmitCommonDebugFrame() {
if (!TAI->doesDwarfRequireFrameSection())
return;
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
// Start the dwarf frame section.
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitLabel("debug_frame_common", 0);
EmitDifference("debug_frame_common_end", 0,
"debug_frame_common_begin", 0, true);
Asm->EOL("Length of Common Information Entry");
EmitLabel("debug_frame_common_begin", 0);
Asm->EmitInt32((int)DW_CIE_ID);
Asm->EOL("CIE Identifier Tag");
Asm->EmitInt8(DW_CIE_VERSION);
Asm->EOL("CIE Version");
Asm->EmitString("");
Asm->EOL("CIE Augmentation");
Asm->EmitULEB128Bytes(1);
Asm->EOL("CIE Code Alignment Factor");
Asm->EmitSLEB128Bytes(stackGrowth);
Asm->EOL("CIE Data Alignment Factor");
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), false));
Asm->EOL("CIE RA Column");
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(NULL, 0, Moves, false);
Asm->EmitAlignment(2, 0, 0, false);
EmitLabel("debug_frame_common_end", 0);
Asm->EOL();
}
/// EmitFunctionDebugFrame - Emit per function frame info into a debug frame
/// section.
void EmitFunctionDebugFrame(const FunctionDebugFrameInfo &DebugFrameInfo) {
if (!TAI->doesDwarfRequireFrameSection())
return;
// Start the dwarf frame section.
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitDifference("debug_frame_end", DebugFrameInfo.Number,
"debug_frame_begin", DebugFrameInfo.Number, true);
Asm->EOL("Length of Frame Information Entry");
EmitLabel("debug_frame_begin", DebugFrameInfo.Number);
EmitSectionOffset("debug_frame_common", "section_debug_frame",
0, 0, true, false);
Asm->EOL("FDE CIE offset");
EmitReference("func_begin", DebugFrameInfo.Number);
Asm->EOL("FDE initial location");
EmitDifference("func_end", DebugFrameInfo.Number,
"func_begin", DebugFrameInfo.Number);
Asm->EOL("FDE address range");
EmitFrameMoves("func_begin", DebugFrameInfo.Number, DebugFrameInfo.Moves, false);
Asm->EmitAlignment(2, 0, 0, false);
EmitLabel("debug_frame_end", DebugFrameInfo.Number);
Asm->EOL();
}
/// EmitDebugPubNames - Emit visible names into a debug pubnames section.
///
void EmitDebugPubNames() {
// Start the dwarf pubnames section.
Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
for (DenseMap<Value *, CompileUnit *>::iterator CI = DW_CUs.begin(),
CE = DW_CUs.end(); CI != CE; ++CI) {
CompileUnit *Unit = CI->second;
EmitDifference("pubnames_end", Unit->getID(),
"pubnames_begin", Unit->getID(), true);
Asm->EOL("Length of Public Names Info");
EmitLabel("pubnames_begin", Unit->getID());
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF Version");
EmitSectionOffset("info_begin", "section_info",
Unit->getID(), 0, true, false);
Asm->EOL("Offset of Compilation Unit Info");
EmitDifference("info_end", Unit->getID(), "info_begin", Unit->getID(),true);
Asm->EOL("Compilation Unit Length");
std::map<std::string, DIE *> &Globals = Unit->getGlobals();
for (std::map<std::string, DIE *>::iterator GI = Globals.begin(),
GE = Globals.end();
GI != GE; ++GI) {
const std::string &Name = GI->first;
DIE * Entity = GI->second;
Asm->EmitInt32(Entity->getOffset()); Asm->EOL("DIE offset");
Asm->EmitString(Name); Asm->EOL("External Name");
}
Asm->EmitInt32(0); Asm->EOL("End Mark");
EmitLabel("pubnames_end", Unit->getID());
Asm->EOL();
}
}
/// EmitDebugStr - Emit visible names into a debug str section.
///
void EmitDebugStr() {
// Check to see if it is worth the effort.
if (!StringPool.empty()) {
// Start the dwarf str section.
Asm->SwitchToDataSection(TAI->getDwarfStrSection());
// For each of strings in the string pool.
for (unsigned StringID = 1, N = StringPool.size();
StringID <= N; ++StringID) {
// Emit a label for reference from debug information entries.
EmitLabel("string", StringID);
// Emit the string itself.
const std::string &String = StringPool[StringID];
Asm->EmitString(String); Asm->EOL();
}
Asm->EOL();
}
}
/// EmitDebugLoc - Emit visible names into a debug loc section.
///
void EmitDebugLoc() {
// Start the dwarf loc section.
Asm->SwitchToDataSection(TAI->getDwarfLocSection());
Asm->EOL();
}
/// EmitDebugARanges - Emit visible names into a debug aranges section.
///
void EmitDebugARanges() {
// Start the dwarf aranges section.
Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
// FIXME - Mock up
#if 0
CompileUnit *Unit = GetBaseCompileUnit();
// Don't include size of length
Asm->EmitInt32(0x1c); Asm->EOL("Length of Address Ranges Info");
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("Dwarf Version");
EmitReference("info_begin", Unit->getID());
Asm->EOL("Offset of Compilation Unit Info");
Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Size of Address");
Asm->EmitInt8(0); Asm->EOL("Size of Segment Descriptor");
Asm->EmitInt16(0); Asm->EOL("Pad (1)");
Asm->EmitInt16(0); Asm->EOL("Pad (2)");
// Range 1
EmitReference("text_begin", 0); Asm->EOL("Address");
EmitDifference("text_end", 0, "text_begin", 0, true); Asm->EOL("Length");
Asm->EmitInt32(0); Asm->EOL("EOM (1)");
Asm->EmitInt32(0); Asm->EOL("EOM (2)");
#endif
Asm->EOL();
}
/// EmitDebugRanges - Emit visible names into a debug ranges section.
///
void EmitDebugRanges() {
// Start the dwarf ranges section.
Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
Asm->EOL();
}
/// EmitDebugMacInfo - Emit visible names into a debug macinfo section.
///
void EmitDebugMacInfo() {
// Start the dwarf macinfo section.
Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection());
Asm->EOL();
}
/// ConstructCompileUnits - Create a compile unit DIEs.
void ConstructCompileUnits() {
std::string CUName = "llvm.dbg.compile_units";
std::vector<GlobalVariable*> Result;
getGlobalVariablesUsing(*M, CUName, Result);
for (std::vector<GlobalVariable *>::iterator RI = Result.begin(),
RE = Result.end(); RI != RE; ++RI) {
DICompileUnit *DIUnit = new DICompileUnit(*RI);
unsigned ID = RecordSource(DIUnit->getDirectory(),
DIUnit->getFilename());
DIE *Die = new DIE(DW_TAG_compile_unit);
AddSectionOffset(Die, DW_AT_stmt_list, DW_FORM_data4,
DWLabel("section_line", 0), DWLabel("section_line", 0),
false);
AddString(Die, DW_AT_producer, DW_FORM_string, DIUnit->getProducer());
AddUInt(Die, DW_AT_language, DW_FORM_data1, DIUnit->getLanguage());
AddString(Die, DW_AT_name, DW_FORM_string, DIUnit->getFilename());
if (!DIUnit->getDirectory().empty())
AddString(Die, DW_AT_comp_dir, DW_FORM_string, DIUnit->getDirectory());
CompileUnit *Unit = new CompileUnit(ID, Die);
DW_CUs[DIUnit->getGV()] = Unit;
}
}
/// ConstructGlobalVariableDIEs - Create DIEs for each of the externally
/// visible global variables.
void ConstructGlobalVariableDIEs() {
std::string GVName = "llvm.dbg.global_variables";
std::vector<GlobalVariable*> Result;
getGlobalVariablesUsing(*M, GVName, Result);
for (std::vector<GlobalVariable *>::iterator GVI = Result.begin(),
GVE = Result.end(); GVI != GVE; ++GVI) {
DIGlobalVariable *DI_GV = new DIGlobalVariable(*GVI);
CompileUnit *DW_Unit = FindCompileUnit(DI_GV->getCompileUnit());
// Check for pre-existence.
DIE *&Slot = DW_Unit->getDieMapSlotFor(DI_GV->getGV());
if (Slot) continue;
DIE *VariableDie = new DIE(DW_TAG_variable);
AddString(VariableDie, DW_AT_name, DW_FORM_string, DI_GV->getName());
const std::string &LinkageName = DI_GV->getLinkageName();
if (!LinkageName.empty())
AddString(VariableDie, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
AddType(DW_Unit, VariableDie, DI_GV->getType());
if (!DI_GV->isLocalToUnit())
AddUInt(VariableDie, DW_AT_external, DW_FORM_flag, 1);
// Add source line info, if available.
AddSourceLine(VariableDie, DI_GV);
// Add address.
DIEBlock *Block = new DIEBlock();
AddUInt(Block, 0, DW_FORM_data1, DW_OP_addr);
AddObjectLabel(Block, 0, DW_FORM_udata,
Asm->getGlobalLinkName(DI_GV->getGV()));
AddBlock(VariableDie, DW_AT_location, 0, Block);
//Add to map.
Slot = VariableDie;
//Add to context owner.
DW_Unit->getDie()->AddChild(VariableDie);
//Expose as global. FIXME - need to check external flag.
DW_Unit->AddGlobal(DI_GV->getName(), VariableDie);
}
}
/// ConstructSubprograms - Create DIEs for each of the externally visible
/// subprograms.
void ConstructSubprograms() {
std::string SPName = "llvm.dbg.subprograms";
std::vector<GlobalVariable*> Result;
getGlobalVariablesUsing(*M, SPName, Result);
for (std::vector<GlobalVariable *>::iterator RI = Result.begin(),
RE = Result.end(); RI != RE; ++RI) {
DISubprogram *SP = new DISubprogram(*RI);
CompileUnit *Unit = FindCompileUnit(SP->getCompileUnit());
// Check for pre-existence.
DIE *&Slot = Unit->getDieMapSlotFor(SP->getGV());
if (Slot) continue;
DIE *SubprogramDie = new DIE(DW_TAG_subprogram);
AddString(SubprogramDie, DW_AT_name, DW_FORM_string, SP->getName());
const std::string &LinkageName = SP->getLinkageName();
if (!LinkageName.empty())
AddString(SubprogramDie, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
DIType SPTy = SP->getType();
AddType(Unit, SubprogramDie, SPTy);
if (!SP->isLocalToUnit())
AddUInt(SubprogramDie, DW_AT_external, DW_FORM_flag, 1);
AddUInt(SubprogramDie, DW_AT_prototyped, DW_FORM_flag, 1);
AddSourceLine(SubprogramDie, SP);
//Add to map.
Slot = SubprogramDie;
//Add to context owner.
Unit->getDie()->AddChild(SubprogramDie);
//Expose as global.
Unit->AddGlobal(SP->getName(), SubprogramDie);
}
}
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
DwarfDebug(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: Dwarf(OS, A, T, "dbg")
, CompileUnits()
, AbbreviationsSet(InitAbbreviationsSetSize)
, Abbreviations()
, ValuesSet(InitValuesSetSize)
, Values()
, StringPool()
, SectionMap()
, SectionSourceLines()
, didInitial(false)
, shouldEmit(false)
, RootDbgScope(NULL)
{
}
virtual ~DwarfDebug() {
for (unsigned i = 0, N = CompileUnits.size(); i < N; ++i)
delete CompileUnits[i];
for (unsigned j = 0, M = Values.size(); j < M; ++j)
delete Values[j];
}
/// SetDebugInfo - Create global DIEs and emit initial debug info sections.
/// This is inovked by the target AsmPrinter.
void SetDebugInfo(MachineModuleInfo *mmi) {
// Create all the compile unit DIEs.
ConstructCompileUnits();
if (DW_CUs.empty())
return;
MMI = mmi;
shouldEmit = true;
MMI->setDebugInfoAvailability(true);
// Create DIEs for each of the externally visible global variables.
ConstructGlobalVariableDIEs();
// Create DIEs for each of the externally visible subprograms.
ConstructSubprograms();
// Prime section data.
SectionMap.insert(TAI->getTextSection());
// Print out .file directives to specify files for .loc directives. These
// are printed out early so that they precede any .loc directives.
if (TAI->hasDotLocAndDotFile()) {
for (unsigned i = 1, e = SrcFiles.size(); i <= e; ++i) {
sys::Path FullPath(Directories[SrcFiles[i].getDirectoryID()]);
bool AppendOk = FullPath.appendComponent(SrcFiles[i].getName());
assert(AppendOk && "Could not append filename to directory!");
AppendOk = false;
Asm->EmitFile(i, FullPath.toString());
Asm->EOL();
}
}
// Emit initial sections
EmitInitial();
}
/// BeginModule - Emit all Dwarf sections that should come prior to the
/// content.
void BeginModule(Module *M) {
this->M = M;
}
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void EndModule() {
if (!ShouldEmitDwarf()) return;
// Standard sections final addresses.
Asm->SwitchToSection(TAI->getTextSection());
EmitLabel("text_end", 0);
Asm->SwitchToSection(TAI->getDataSection());
EmitLabel("data_end", 0);
// End text sections.
for (unsigned i = 1, N = SectionMap.size(); i <= N; ++i) {
Asm->SwitchToSection(SectionMap[i]);
EmitLabel("section_end", i);
}
// Emit common frame information.
EmitCommonDebugFrame();
// Emit function debug frame information
for (std::vector<FunctionDebugFrameInfo>::iterator I = DebugFrames.begin(),
E = DebugFrames.end(); I != E; ++I)
EmitFunctionDebugFrame(*I);
// Compute DIE offsets and sizes.
SizeAndOffsets();
// Emit all the DIEs into a debug info section
EmitDebugInfo();
// Corresponding abbreviations into a abbrev section.
EmitAbbreviations();
// Emit source line correspondence into a debug line section.
EmitDebugLines();
// Emit info into a debug pubnames section.
EmitDebugPubNames();
// Emit info into a debug str section.
EmitDebugStr();
// Emit info into a debug loc section.
EmitDebugLoc();
// Emit info into a debug aranges section.
EmitDebugARanges();
// Emit info into a debug ranges section.
EmitDebugRanges();
// Emit info into a debug macinfo section.
EmitDebugMacInfo();
}
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void BeginFunction(MachineFunction *MF) {
this->MF = MF;
if (!ShouldEmitDwarf()) return;
// Begin accumulating function debug information.
MMI->BeginFunction(MF);
// Assumes in correct section after the entry point.
EmitLabel("func_begin", ++SubprogramCount);
// Emit label for the implicitly defined dbg.stoppoint at the start of
// the function.
if (!Lines.empty()) {
const SrcLineInfo &LineInfo = Lines[0];
Asm->printLabel(LineInfo.getLabelID());
}
}
/// EndFunction - Gather and emit post-function debug information.
///
void EndFunction(MachineFunction *MF) {
if (!ShouldEmitDwarf()) return;
// Define end label for subprogram.
EmitLabel("func_end", SubprogramCount);
// Get function line info.
if (!Lines.empty()) {
// Get section line info.
unsigned ID = SectionMap.insert(Asm->CurrentSection_);
if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
std::vector<SrcLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
// Append the function info to section info.
SectionLineInfos.insert(SectionLineInfos.end(),
Lines.begin(), Lines.end());
}
// Construct scopes for subprogram.
if (RootDbgScope)
ConstructRootDbgScope(RootDbgScope);
else
// FIXME: This is wrong. We are essentially getting past a problem with
// debug information not being able to handle unreachable blocks that have
// debug information in them. In particular, those unreachable blocks that
// have "region end" info in them. That situation results in the "root
// scope" not being created. If that's the case, then emit a "default"
// scope, i.e., one that encompasses the whole function. This isn't
// desirable. And a better way of handling this (and all of the debugging
// information) needs to be explored.
ConstructDefaultDbgScope(MF);
DebugFrames.push_back(FunctionDebugFrameInfo(SubprogramCount,
MMI->getFrameMoves()));
// Clear debug info
if (RootDbgScope) {
delete RootDbgScope;
DbgScopeMap.clear();
RootDbgScope = NULL;
}
Lines.clear();
}
public:
/// ValidDebugInfo - Return true if V represents valid debug info value.
bool ValidDebugInfo(Value *V) {
GlobalVariable *GV = getGlobalVariable(V);
if (!GV)
return false;
if (GV->getLinkage() != GlobalValue::InternalLinkage
&& GV->getLinkage() != GlobalValue::LinkOnceLinkage)
return false;
DIDescriptor DI(GV);
// Check current version. Allow Version6 for now.
unsigned Version = DI.getVersion();
if (Version != DIDescriptor::Version7 && Version != DIDescriptor::Version6)
return false;
//FIXME - Check individual descriptors.
return true;
}
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned RecordSourceLine(Value *V, unsigned Line, unsigned Col) {
CompileUnit *Unit = DW_CUs[V];
assert (Unit && "Unable to find CompileUnit");
unsigned ID = MMI->NextLabelID();
Lines.push_back(SrcLineInfo(Line, Col, Unit->getID(), ID));
return ID;
}
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned RecordSourceLine(unsigned Line, unsigned Col, unsigned Src) {
unsigned ID = MMI->NextLabelID();
Lines.push_back(SrcLineInfo(Line, Col, Src, ID));
return ID;
}
unsigned getRecordSourceLineCount() {
return Lines.size();
}
/// RecordSource - Register a source file with debug info. Returns an source
/// ID.
unsigned RecordSource(const std::string &Directory,
const std::string &File) {
unsigned DID = Directories.insert(Directory);
return SrcFiles.insert(SrcFileInfo(DID,File));
}
/// RecordRegionStart - Indicate the start of a region.
///
unsigned RecordRegionStart(GlobalVariable *V) {
DbgScope *Scope = getOrCreateScope(V);
unsigned ID = MMI->NextLabelID();
if (!Scope->getStartLabelID()) Scope->setStartLabelID(ID);
return ID;
}
/// RecordRegionEnd - Indicate the end of a region.
///
unsigned RecordRegionEnd(GlobalVariable *V) {
DbgScope *Scope = getOrCreateScope(V);
unsigned ID = MMI->NextLabelID();
Scope->setEndLabelID(ID);
return ID;
}
/// RecordVariable - Indicate the declaration of a local variable.
///
void RecordVariable(GlobalVariable *GV, unsigned FrameIndex) {
DIDescriptor Desc(GV);
DbgScope *Scope = NULL;
if (Desc.getTag() == DW_TAG_variable) {
// GV is a global variable.
DIGlobalVariable DG(GV);
Scope = getOrCreateScope(DG.getContext().getGV());
} else {
// or GV is a local variable.
DIVariable DV(GV);
Scope = getOrCreateScope(DV.getContext().getGV());
}
assert (Scope && "Unable to find variable' scope");
DIVariable *VD = new DIVariable(GV);
DbgVariable *DV = new DbgVariable(VD, FrameIndex);
Scope->AddVariable(DV);
}
};
//===----------------------------------------------------------------------===//
/// DwarfException - Emits Dwarf exception handling directives.
///
class DwarfException : public Dwarf {
private:
struct FunctionEHFrameInfo {
std::string FnName;
unsigned Number;
unsigned PersonalityIndex;
bool hasCalls;
bool hasLandingPads;
std::vector<MachineMove> Moves;
const Function * function;
FunctionEHFrameInfo(const std::string &FN, unsigned Num, unsigned P,
bool hC, bool hL,
const std::vector<MachineMove> &M,
const Function *f):
FnName(FN), Number(Num), PersonalityIndex(P),
hasCalls(hC), hasLandingPads(hL), Moves(M), function (f) { }
};
std::vector<FunctionEHFrameInfo> EHFrames;
/// shouldEmitTable - Per-function flag to indicate if EH tables should
/// be emitted.
bool shouldEmitTable;
/// shouldEmitMoves - Per-function flag to indicate if frame moves info
/// should be emitted.
bool shouldEmitMoves;
/// shouldEmitTableModule - Per-module flag to indicate if EH tables
/// should be emitted.
bool shouldEmitTableModule;
/// shouldEmitFrameModule - Per-module flag to indicate if frame moves
/// should be emitted.
bool shouldEmitMovesModule;
/// EmitCommonEHFrame - Emit the common eh unwind frame.
///
void EmitCommonEHFrame(const Function *Personality, unsigned Index) {
// Size and sign of stack growth.
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
// Begin eh frame section.
Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
if (!TAI->doesRequireNonLocalEHFrameLabel())
O << TAI->getEHGlobalPrefix();
O << "EH_frame" << Index << ":\n";
EmitLabel("section_eh_frame", Index);
// Define base labels.
EmitLabel("eh_frame_common", Index);
// Define the eh frame length.
EmitDifference("eh_frame_common_end", Index,
"eh_frame_common_begin", Index, true);
Asm->EOL("Length of Common Information Entry");
// EH frame header.
EmitLabel("eh_frame_common_begin", Index);
Asm->EmitInt32((int)0);
Asm->EOL("CIE Identifier Tag");
Asm->EmitInt8(DW_CIE_VERSION);
Asm->EOL("CIE Version");
// The personality presence indicates that language specific information
// will show up in the eh frame.
Asm->EmitString(Personality ? "zPLR" : "zR");
Asm->EOL("CIE Augmentation");
// Round out reader.
Asm->EmitULEB128Bytes(1);
Asm->EOL("CIE Code Alignment Factor");
Asm->EmitSLEB128Bytes(stackGrowth);
Asm->EOL("CIE Data Alignment Factor");
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
Asm->EOL("CIE Return Address Column");
// If there is a personality, we need to indicate the functions location.
if (Personality) {
Asm->EmitULEB128Bytes(7);
Asm->EOL("Augmentation Size");
if (TAI->getNeedsIndirectEncoding()) {
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4 | DW_EH_PE_indirect);
Asm->EOL("Personality (pcrel sdata4 indirect)");
} else {
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("Personality (pcrel sdata4)");
}
PrintRelDirective(true);
O << TAI->getPersonalityPrefix();
Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
O << TAI->getPersonalitySuffix();
if (strcmp(TAI->getPersonalitySuffix(), "+4@GOTPCREL"))
O << "-" << TAI->getPCSymbol();
Asm->EOL("Personality");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("LSDA Encoding (pcrel sdata4)");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("FDE Encoding (pcrel sdata4)");
} else {
Asm->EmitULEB128Bytes(1);
Asm->EOL("Augmentation Size");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("FDE Encoding (pcrel sdata4)");
}
// Indicate locations of general callee saved registers in frame.
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(NULL, 0, Moves, true);
// On Darwin the linker honors the alignment of eh_frame, which means it
// must be 8-byte on 64-bit targets to match what gcc does. Otherwise
// you get holes which confuse readers of eh_frame.
Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
0, 0, false);
EmitLabel("eh_frame_common_end", Index);
Asm->EOL();
}
/// EmitEHFrame - Emit function exception frame information.
///
void EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
Function::LinkageTypes linkage = EHFrameInfo.function->getLinkage();
Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
// Externally visible entry into the functions eh frame info.
// If the corresponding function is static, this should not be
// externally visible.
if (linkage != Function::InternalLinkage &&
linkage != Function::PrivateLinkage) {
if (const char *GlobalEHDirective = TAI->getGlobalEHDirective())
O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
}
// If corresponding function is weak definition, this should be too.
if ((linkage == Function::WeakLinkage ||
linkage == Function::LinkOnceLinkage) &&
TAI->getWeakDefDirective())
O << TAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
// If there are no calls then you can't unwind. This may mean we can
// omit the EH Frame, but some environments do not handle weak absolute
// symbols.
// If UnwindTablesMandatory is set we cannot do this optimization; the
// unwind info is to be available for non-EH uses.
if (!EHFrameInfo.hasCalls &&
!UnwindTablesMandatory &&
((linkage != Function::WeakLinkage &&
linkage != Function::LinkOnceLinkage) ||
!TAI->getWeakDefDirective() ||
TAI->getSupportsWeakOmittedEHFrame()))
{
O << EHFrameInfo.FnName << " = 0\n";
// This name has no connection to the function, so it might get
// dead-stripped when the function is not, erroneously. Prohibit
// dead-stripping unconditionally.
if (const char *UsedDirective = TAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << "\n\n";
} else {
O << EHFrameInfo.FnName << ":\n";
// EH frame header.
EmitDifference("eh_frame_end", EHFrameInfo.Number,
"eh_frame_begin", EHFrameInfo.Number, true);
Asm->EOL("Length of Frame Information Entry");
EmitLabel("eh_frame_begin", EHFrameInfo.Number);
if (TAI->doesRequireNonLocalEHFrameLabel()) {
PrintRelDirective(true, true);
PrintLabelName("eh_frame_begin", EHFrameInfo.Number);
if (!TAI->isAbsoluteEHSectionOffsets())
O << "-EH_frame" << EHFrameInfo.PersonalityIndex;
} else {
EmitSectionOffset("eh_frame_begin", "eh_frame_common",
EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
true, true, false);
}
Asm->EOL("FDE CIE offset");
EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
Asm->EOL("FDE initial location");
EmitDifference("eh_func_end", EHFrameInfo.Number,
"eh_func_begin", EHFrameInfo.Number, true);
Asm->EOL("FDE address range");
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
if (EHFrameInfo.PersonalityIndex) {
Asm->EmitULEB128Bytes(4);
Asm->EOL("Augmentation size");
if (EHFrameInfo.hasLandingPads)
EmitReference("exception", EHFrameInfo.Number, true, true);
else
Asm->EmitInt32((int)0);
Asm->EOL("Language Specific Data Area");
} else {
Asm->EmitULEB128Bytes(0);
Asm->EOL("Augmentation size");
}
// Indicate locations of function specific callee saved registers in
// frame.
EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves, true);
// On Darwin the linker honors the alignment of eh_frame, which means it
// must be 8-byte on 64-bit targets to match what gcc does. Otherwise
// you get holes which confuse readers of eh_frame.
Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
0, 0, false);
EmitLabel("eh_frame_end", EHFrameInfo.Number);
// If the function is marked used, this table should be also. We cannot
// make the mark unconditional in this case, since retaining the table
// also retains the function in this case, and there is code around
// that depends on unused functions (calling undefined externals) being
// dead-stripped to link correctly. Yes, there really is.
if (MMI->getUsedFunctions().count(EHFrameInfo.function))
if (const char *UsedDirective = TAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << "\n\n";
}
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
/// EmitExceptionTable - Emit landing pads and actions.
///
/// The general organization of the table is complex, but the basic concepts
/// are easy. First there is a header which describes the location and
/// organization of the three components that follow.
/// 1. The landing pad site information describes the range of code covered
/// by the try. In our case it's an accumulation of the ranges covered
/// by the invokes in the try. There is also a reference to the landing
/// pad that handles the exception once processed. Finally an index into
/// the actions table.
/// 2. The action table, in our case, is composed of pairs of type ids
/// and next action offset. Starting with the action index from the
/// landing pad site, each type Id is checked for a match to the current
/// exception. If it matches then the exception and type id are passed
/// on to the landing pad. Otherwise the next action is looked up. This
/// chain is terminated with a next action of zero. If no type id is
/// found the the frame is unwound and handling continues.
/// 3. Type id table contains references to all the C++ typeinfo for all
/// catches in the function. This tables is reversed indexed base 1.
/// SharedTypeIds - How many leading type ids two landing pads have in common.
static unsigned SharedTypeIds(const LandingPadInfo *L,
const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
unsigned Count = 0;
for (; Count != MinSize; ++Count)
if (LIds[Count] != RIds[Count])
return Count;
return Count;
}
/// PadLT - Order landing pads lexicographically by type id.
static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
for (unsigned i = 0; i != MinSize; ++i)
if (LIds[i] != RIds[i])
return LIds[i] < RIds[i];
return LSize < RSize;
}
struct KeyInfo {
static inline unsigned getEmptyKey() { return -1U; }
static inline unsigned getTombstoneKey() { return -2U; }
static unsigned getHashValue(const unsigned &Key) { return Key; }
static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
static bool isPod() { return true; }
};
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
/// ActionEntry - Structure describing an entry in the actions table.
struct ActionEntry {
int ValueForTypeID; // The value to write - may not be equal to the type id.
int NextAction;
struct ActionEntry *Previous;
};
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
/// PadRange - Structure holding a try-range and the associated landing pad.
struct PadRange {
// The index of the landing pad.
unsigned PadIndex;
// The index of the begin and end labels in the landing pad's label lists.
unsigned RangeIndex;
};
typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
/// CallSiteEntry - Structure describing an entry in the call-site table.
struct CallSiteEntry {
// The 'try-range' is BeginLabel .. EndLabel.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
unsigned BeginLabel; // zero indicates the start of the function.
unsigned EndLabel; // zero indicates the end of the function.
// The landing pad starts at PadLabel.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
unsigned PadLabel; // zero indicates that there is no landing pad.
unsigned Action;
};
void EmitExceptionTable() {
const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
if (PadInfos.empty()) return;
// Sort the landing pads in order of their type ids. This is used to fold
// duplicate actions.
SmallVector<const LandingPadInfo *, 64> LandingPads;
LandingPads.reserve(PadInfos.size());
for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
LandingPads.push_back(&PadInfos[i]);
std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
// Negative type ids index into FilterIds, positive type ids index into
// TypeInfos. The value written for a positive type id is just the type
// id itself. For a negative type id, however, the value written is the
// (negative) byte offset of the corresponding FilterIds entry. The byte
// offset is usually equal to the type id, because the FilterIds entries
// are written using a variable width encoding which outputs one byte per
// entry as long as the value written is not too large, but can differ.
// This kind of complication does not occur for positive type ids because
// type infos are output using a fixed width encoding.
// FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
Offset -= TargetAsmInfo::getULEB128Size(*I);
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
// Compute the actions table and gather the first action index for each
// landing pad site.
SmallVector<ActionEntry, 32> Actions;
SmallVector<unsigned, 64> FirstActions;
FirstActions.reserve(LandingPads.size());
int FirstAction = 0;
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
unsigned SizeActions = 0;
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LP = LandingPads[i];
const std::vector<int> &TypeIds = LP->TypeIds;
const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
unsigned SizeSiteActions = 0;
if (NumShared < TypeIds.size()) {
unsigned SizeAction = 0;
ActionEntry *PrevAction = 0;
if (NumShared) {
const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
SizeAction -=
TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
}
// Compute the actions.
for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
int TypeID = TypeIds[I];
assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
Actions.push_back(Action);
PrevAction = &Actions.back();
2007-03-01 20:26:43 +00:00
}
// Record the first action of the landing pad site.
FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
} // else identical - re-use previous FirstAction
FirstActions.push_back(FirstAction);
// Compute this sites contribution to size.
SizeActions += SizeSiteActions;
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
// Compute the call-site table. The entry for an invoke has a try-range
// containing the call, a non-zero landing pad and an appropriate action.
// The entry for an ordinary call has a try-range containing the call and
// zero for the landing pad and the action. Calls marked 'nounwind' have
// no entry and must not be contained in the try-range of any entry - they
// form gaps in the table. Entries must be ordered by try-range address.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
SmallVector<CallSiteEntry, 64> CallSites;
RangeMapType PadMap;
// Invokes and nounwind calls have entries in PadMap (due to being bracketed
// by try-range labels when lowered). Ordinary calls do not, so appropriate
// try-ranges for them need be deduced.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LandingPad = LandingPads[i];
for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
unsigned BeginLabel = LandingPad->BeginLabels[j];
assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
PadRange P = { i, j };
PadMap[BeginLabel] = P;
}
}
// The end label of the previous invoke or nounwind try-range.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
unsigned LastLabel = 0;
// Whether there is a potentially throwing instruction (currently this means
// an ordinary call) between the end of the previous try-range and now.
bool SawPotentiallyThrowing = false;
// Whether the last callsite entry was for an invoke.
bool PreviousIsInvoke = false;
// Visit all instructions in order of address.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
MI != E; ++MI) {
if (!MI->isLabel()) {
SawPotentiallyThrowing |= MI->getDesc().isCall();
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
continue;
}
unsigned BeginLabel = MI->getOperand(0).getImm();
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
assert(BeginLabel && "Invalid label!");
// End of the previous try-range?
if (BeginLabel == LastLabel)
SawPotentiallyThrowing = false;
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
// Beginning of a new try-range?
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
RangeMapType::iterator L = PadMap.find(BeginLabel);
if (L == PadMap.end())
// Nope, it was just some random label.
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
continue;
PadRange P = L->second;
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
"Inconsistent landing pad map!");
// If some instruction between the previous try-range and this one may
// throw, create a call-site entry with no landing pad for the region
// between the try-ranges.
if (SawPotentiallyThrowing) {
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
CallSites.push_back(Site);
PreviousIsInvoke = false;
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
}
LastLabel = LandingPad->EndLabels[P.RangeIndex];
assert(BeginLabel && LastLabel && "Invalid landing pad!");
if (LandingPad->LandingPadLabel) {
// This try-range is for an invoke.
CallSiteEntry Site = {BeginLabel, LastLabel,
LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
// Try to merge with the previous call-site.
if (PreviousIsInvoke) {
CallSiteEntry &Prev = CallSites.back();
if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
// Extend the range of the previous entry.
Prev.EndLabel = Site.EndLabel;
continue;
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
}
// Otherwise, create a new call-site.
CallSites.push_back(Site);
PreviousIsInvoke = true;
} else {
// Create a gap.
PreviousIsInvoke = false;
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
}
}
// If some instruction between the previous try-range and the end of the
// function may throw, create a call-site entry with no landing pad for the
// region following the try-range.
if (SawPotentiallyThrowing) {
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
CallSiteEntry Site = {LastLabel, 0, 0, 0};
CallSites.push_back(Site);
}
// Final tallies.
// Call sites.
const unsigned SiteStartSize = sizeof(int32_t); // DW_EH_PE_udata4
const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4
const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4
unsigned SizeSites = CallSites.size() * (SiteStartSize +
SiteLengthSize +
LandingPadSize);
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
// Type infos.
const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr
unsigned SizeTypes = TypeInfos.size() * TypeInfoSize;
unsigned TypeOffset = sizeof(int8_t) + // Call site format
TargetAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
SizeSites + SizeActions + SizeTypes;
unsigned TotalSize = sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
TypeOffset;
unsigned SizeAlign = (4 - TotalSize) & 3;
// Begin the exception table.
Asm->SwitchToDataSection(TAI->getDwarfExceptionSection());
Asm->EmitAlignment(2, 0, 0, false);
O << "GCC_except_table" << SubprogramCount << ":\n";
for (unsigned i = 0; i != SizeAlign; ++i) {
Asm->EmitInt8(0);
Asm->EOL("Padding");
}
EmitLabel("exception", SubprogramCount);
// Emit the header.
Asm->EmitInt8(DW_EH_PE_omit);
Asm->EOL("LPStart format (DW_EH_PE_omit)");
Asm->EmitInt8(DW_EH_PE_absptr);
Asm->EOL("TType format (DW_EH_PE_absptr)");
Asm->EmitULEB128Bytes(TypeOffset);
Asm->EOL("TType base offset");
Asm->EmitInt8(DW_EH_PE_udata4);
Asm->EOL("Call site format (DW_EH_PE_udata4)");
Asm->EmitULEB128Bytes(SizeSites);
Asm->EOL("Call-site table length");
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
// Emit the landing pad site information.
for (unsigned i = 0; i < CallSites.size(); ++i) {
CallSiteEntry &S = CallSites[i];
const char *BeginTag;
unsigned BeginNumber;
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
if (!S.BeginLabel) {
BeginTag = "eh_func_begin";
BeginNumber = SubprogramCount;
} else {
BeginTag = "label";
BeginNumber = S.BeginLabel;
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
true, true);
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
Asm->EOL("Region start");
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
if (!S.EndLabel) {
EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
true);
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
} else {
EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
}
Asm->EOL("Region length");
if (!S.PadLabel)
Asm->EmitInt32(0);
else
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
true, true);
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
Asm->EOL("Landing pad");
Asm->EmitULEB128Bytes(S.Action);
Asm->EOL("Action");
}
// Emit the actions.
for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
ActionEntry &Action = Actions[I];
Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
Asm->EOL("TypeInfo index");
Asm->EmitSLEB128Bytes(Action.NextAction);
Asm->EOL("Next action");
}
// Emit the type ids.
for (unsigned M = TypeInfos.size(); M; --M) {
GlobalVariable *GV = TypeInfos[M - 1];
PrintRelDirective();
if (GV)
O << Asm->getGlobalLinkName(GV);
else
O << "0";
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
Asm->EOL("TypeInfo");
}
// Emit the filter typeids.
for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
unsigned TypeID = FilterIds[j];
Asm->EmitULEB128Bytes(TypeID);
Asm->EOL("Filter TypeInfo index");
2007-03-01 20:26:43 +00:00
}
Fix PR1628. When exception handling is turned on, labels are generated bracketing each call (not just invokes). This is used to generate entries in the exception table required by the C++ personality. However it gets in the way of tail-merging. This patch solves the problem by no longer placing labels around ordinary calls. Instead we generate entries in the exception table that cover every instruction in the function that wasn't covered by an invoke range (the range given by the labels around the invoke). As an optimization, such entries are only generated for parts of the function that contain a call, since for the moment those are the only instructions that can throw an exception [1]. As a happy consequence, we now get a smaller exception table, since the same region can cover many calls. While there, I also implemented folding of invoke ranges - successive ranges are merged when safe to do so. Finally, if a selector contains only a cleanup, there's a special shorthand for it - place a 0 in the call-site entry. I implemented this while there. As a result, the exception table output (excluding filters) is now optimal - it cannot be made smaller [2]. The problem with throw filters is that folding them optimally is hard, and the benefit of folding them is minimal. [1] I tested that having trapping instructions (eg divide by zero) in such a region doesn't cause trouble. [2] It could be made smaller with the help of higher layers, eg by having branch folding reorder basic blocks ending in invokes with the same landing pad so they follow each other. I don't know if this is worth doing. llvm-svn: 41718
2007-09-05 11:27:52 +00:00
Asm->EmitAlignment(2, 0, 0, false);
}
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
DwarfException(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: Dwarf(OS, A, T, "eh")
, shouldEmitTable(false)
, shouldEmitMoves(false)
, shouldEmitTableModule(false)
, shouldEmitMovesModule(false)
{}
virtual ~DwarfException() {}
/// SetModuleInfo - Set machine module information when it's known that pass
/// manager has created it. Set by the target AsmPrinter.
void SetModuleInfo(MachineModuleInfo *mmi) {
MMI = mmi;
}
/// BeginModule - Emit all exception information that should come prior to the
/// content.
void BeginModule(Module *M) {
this->M = M;
}
/// EndModule - Emit all exception information that should come after the
/// content.
void EndModule() {
if (shouldEmitMovesModule || shouldEmitTableModule) {
const std::vector<Function *> Personalities = MMI->getPersonalities();
for (unsigned i =0; i < Personalities.size(); ++i)
EmitCommonEHFrame(Personalities[i], i);
for (std::vector<FunctionEHFrameInfo>::iterator I = EHFrames.begin(),
E = EHFrames.end(); I != E; ++I)
EmitEHFrame(*I);
}
}
/// BeginFunction - Gather pre-function exception information. Assumes being
/// emitted immediately after the function entry point.
void BeginFunction(MachineFunction *MF) {
this->MF = MF;
shouldEmitTable = shouldEmitMoves = false;
if (MMI && TAI->doesSupportExceptionHandling()) {
// Map all labels and get rid of any dead landing pads.
MMI->TidyLandingPads();
// If any landing pads survive, we need an EH table.
if (MMI->getLandingPads().size())
shouldEmitTable = true;
// See if we need frame move info.
if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
shouldEmitMoves = true;
if (shouldEmitMoves || shouldEmitTable)
// Assumes in correct section after the entry point.
EmitLabel("eh_func_begin", ++SubprogramCount);
}
shouldEmitTableModule |= shouldEmitTable;
shouldEmitMovesModule |= shouldEmitMoves;
}
/// EndFunction - Gather and emit post-function exception information.
///
void EndFunction() {
if (shouldEmitMoves || shouldEmitTable) {
EmitLabel("eh_func_end", SubprogramCount);
EmitExceptionTable();
// Save EH frame information
EHFrames.
push_back(FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF),
SubprogramCount,
MMI->getPersonalityIndex(),
MF->getFrameInfo()->hasCalls(),
!MMI->getLandingPads().empty(),
MMI->getFrameMoves(),
MF->getFunction()));
}
}
};
} // End of namespace llvm
//===----------------------------------------------------------------------===//
/// Emit - Print the abbreviation using the specified Dwarf writer.
///
void DIEAbbrev::Emit(const DwarfDebug &DD) const {
// Emit its Dwarf tag type.
DD.getAsm()->EmitULEB128Bytes(Tag);
DD.getAsm()->EOL(TagString(Tag));
// Emit whether it has children DIEs.
DD.getAsm()->EmitULEB128Bytes(ChildrenFlag);
DD.getAsm()->EOL(ChildrenString(ChildrenFlag));
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
const DIEAbbrevData &AttrData = Data[i];
// Emit attribute type.
DD.getAsm()->EmitULEB128Bytes(AttrData.getAttribute());
DD.getAsm()->EOL(AttributeString(AttrData.getAttribute()));
// Emit form type.
DD.getAsm()->EmitULEB128Bytes(AttrData.getForm());
DD.getAsm()->EOL(FormEncodingString(AttrData.getForm()));
}
// Mark end of abbreviation.
DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(1)");
DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(2)");
}
#ifndef NDEBUG
void DIEAbbrev::print(std::ostream &O) {
O << "Abbreviation @"
<< std::hex << (intptr_t)this << std::dec
<< " "
<< TagString(Tag)
<< " "
<< ChildrenString(ChildrenFlag)
<< "\n";
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << " "
<< AttributeString(Data[i].getAttribute())
<< " "
<< FormEncodingString(Data[i].getForm())
<< "\n";
}
}
void DIEAbbrev::dump() { print(cerr); }
#endif
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
void DIEValue::dump() {
print(cerr);
}
#endif
//===----------------------------------------------------------------------===//
/// EmitValue - Emit integer of appropriate size.
///
void DIEInteger::EmitValue(DwarfDebug &DD, unsigned Form) {
switch (Form) {
case DW_FORM_flag: // Fall thru
case DW_FORM_ref1: // Fall thru
case DW_FORM_data1: DD.getAsm()->EmitInt8(Integer); break;
case DW_FORM_ref2: // Fall thru
case DW_FORM_data2: DD.getAsm()->EmitInt16(Integer); break;
case DW_FORM_ref4: // Fall thru
case DW_FORM_data4: DD.getAsm()->EmitInt32(Integer); break;
case DW_FORM_ref8: // Fall thru
case DW_FORM_data8: DD.getAsm()->EmitInt64(Integer); break;
case DW_FORM_udata: DD.getAsm()->EmitULEB128Bytes(Integer); break;
case DW_FORM_sdata: DD.getAsm()->EmitSLEB128Bytes(Integer); break;
default: assert(0 && "DIE Value form not supported yet"); break;
}
}
/// SizeOf - Determine size of integer value in bytes.
///
unsigned DIEInteger::SizeOf(const DwarfDebug &DD, unsigned Form) const {
switch (Form) {
case DW_FORM_flag: // Fall thru
case DW_FORM_ref1: // Fall thru
case DW_FORM_data1: return sizeof(int8_t);
case DW_FORM_ref2: // Fall thru
case DW_FORM_data2: return sizeof(int16_t);
case DW_FORM_ref4: // Fall thru
case DW_FORM_data4: return sizeof(int32_t);
case DW_FORM_ref8: // Fall thru
case DW_FORM_data8: return sizeof(int64_t);
case DW_FORM_udata: return TargetAsmInfo::getULEB128Size(Integer);
case DW_FORM_sdata: return TargetAsmInfo::getSLEB128Size(Integer);
default: assert(0 && "DIE Value form not supported yet"); break;
}
return 0;
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit string value.
///
void DIEString::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.getAsm()->EmitString(String);
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit label value.
///
void DIEDwarfLabel::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitReference(Label, false, IsSmall);
}
/// SizeOf - Determine size of label value in bytes.
///
unsigned DIEDwarfLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit label value.
///
void DIEObjectLabel::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitReference(Label, false, IsSmall);
}
/// SizeOf - Determine size of label value in bytes.
///
unsigned DIEObjectLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit delta value.
///
void DIESectionOffset::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitSectionOffset(Label.Tag, Section.Tag,
Label.Number, Section.Number, IsSmall, IsEH, UseSet);
}
/// SizeOf - Determine size of delta value in bytes.
///
unsigned DIESectionOffset::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit delta value.
///
void DIEDelta::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitDifference(LabelHi, LabelLo, IsSmall);
}
/// SizeOf - Determine size of delta value in bytes.
///
unsigned DIEDelta::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit debug information entry offset.
///
void DIEntry::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.getAsm()->EmitInt32(Entry->getOffset());
}
//===----------------------------------------------------------------------===//
/// ComputeSize - calculate the size of the block.
///
unsigned DIEBlock::ComputeSize(DwarfDebug &DD) {
if (!Size) {
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev.getData();
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
Size += Values[i]->SizeOf(DD, AbbrevData[i].getForm());
}
}
return Size;
}
/// EmitValue - Emit block data.
///
void DIEBlock::EmitValue(DwarfDebug &DD, unsigned Form) {
switch (Form) {
case DW_FORM_block1: DD.getAsm()->EmitInt8(Size); break;
case DW_FORM_block2: DD.getAsm()->EmitInt16(Size); break;
case DW_FORM_block4: DD.getAsm()->EmitInt32(Size); break;
case DW_FORM_block: DD.getAsm()->EmitULEB128Bytes(Size); break;
default: assert(0 && "Improper form for block"); break;
}
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev.getData();
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
DD.getAsm()->EOL();
Values[i]->EmitValue(DD, AbbrevData[i].getForm());
}
}
/// SizeOf - Determine size of block data in bytes.
///
unsigned DIEBlock::SizeOf(const DwarfDebug &DD, unsigned Form) const {
switch (Form) {
case DW_FORM_block1: return Size + sizeof(int8_t);
case DW_FORM_block2: return Size + sizeof(int16_t);
case DW_FORM_block4: return Size + sizeof(int32_t);
case DW_FORM_block: return Size + TargetAsmInfo::getULEB128Size(Size);
default: assert(0 && "Improper form for block"); break;
}
return 0;
}
//===----------------------------------------------------------------------===//
/// DIE Implementation
DIE::~DIE() {
for (unsigned i = 0, N = Children.size(); i < N; ++i)
delete Children[i];
}
/// AddSiblingOffset - Add a sibling offset field to the front of the DIE.
///
void DIE::AddSiblingOffset() {
DIEInteger *DI = new DIEInteger(0);
Values.insert(Values.begin(), DI);
Abbrev.AddFirstAttribute(DW_AT_sibling, DW_FORM_ref4);
}
/// Profile - Used to gather unique data for the value folding set.
///
void DIE::Profile(FoldingSetNodeID &ID) {
Abbrev.Profile(ID);
for (unsigned i = 0, N = Children.size(); i < N; ++i)
ID.AddPointer(Children[i]);
for (unsigned j = 0, M = Values.size(); j < M; ++j)
ID.AddPointer(Values[j]);
}
#ifndef NDEBUG
void DIE::print(std::ostream &O, unsigned IncIndent) {
static unsigned IndentCount = 0;
IndentCount += IncIndent;
const std::string Indent(IndentCount, ' ');
bool isBlock = Abbrev.getTag() == 0;
if (!isBlock) {
O << Indent
<< "Die: "
<< "0x" << std::hex << (intptr_t)this << std::dec
<< ", Offset: " << Offset
<< ", Size: " << Size
<< "\n";
O << Indent
<< TagString(Abbrev.getTag())
<< " "
<< ChildrenString(Abbrev.getChildrenFlag());
} else {
O << "Size: " << Size;
}
O << "\n";
const SmallVector<DIEAbbrevData, 8> &Data = Abbrev.getData();
IndentCount += 2;
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << Indent;
if (!isBlock)
O << AttributeString(Data[i].getAttribute());
else
O << "Blk[" << i << "]";
O << " "
<< FormEncodingString(Data[i].getForm())
<< " ";
Values[i]->print(O);
O << "\n";
}
IndentCount -= 2;
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
Children[j]->print(O, 4);
}
if (!isBlock) O << "\n";
IndentCount -= IncIndent;
}
void DIE::dump() {
print(cerr);
}
#endif
//===----------------------------------------------------------------------===//
/// DwarfWriter Implementation
///
DwarfWriter::DwarfWriter() : ImmutablePass(&ID), DD(NULL), DE(NULL) {
}
DwarfWriter::~DwarfWriter() {
delete DE;
delete DD;
}
/// BeginModule - Emit all Dwarf sections that should come prior to the
/// content.
void DwarfWriter::BeginModule(Module *M,
MachineModuleInfo *MMI,
raw_ostream &OS, AsmPrinter *A,
const TargetAsmInfo *T) {
DE = new DwarfException(OS, A, T);
DD = new DwarfDebug(OS, A, T);
DE->BeginModule(M);
DD->BeginModule(M);
DD->SetDebugInfo(MMI);
DE->SetModuleInfo(MMI);
}
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void DwarfWriter::EndModule() {
DE->EndModule();
DD->EndModule();
}
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void DwarfWriter::BeginFunction(MachineFunction *MF) {
DE->BeginFunction(MF);
DD->BeginFunction(MF);
}
/// EndFunction - Gather and emit post-function debug information.
///
void DwarfWriter::EndFunction(MachineFunction *MF) {
DD->EndFunction(MF);
DE->EndFunction();
if (MachineModuleInfo *MMI = DD->getMMI() ? DD->getMMI() : DE->getMMI())
// Clear function debug information.
MMI->EndFunction();
}
/// ValidDebugInfo - Return true if V represents valid debug info value.
bool DwarfWriter::ValidDebugInfo(Value *V) {
return DD->ValidDebugInfo(V);
}
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned DwarfWriter::RecordSourceLine(unsigned Line, unsigned Col,
unsigned Src) {
return DD->RecordSourceLine(Line, Col, Src);
}
/// RecordSource - Register a source file with debug info. Returns an source
/// ID.
unsigned DwarfWriter::RecordSource(const std::string &Dir,
const std::string &File) {
return DD->RecordSource(Dir, File);
}
/// RecordRegionStart - Indicate the start of a region.
unsigned DwarfWriter::RecordRegionStart(GlobalVariable *V) {
return DD->RecordRegionStart(V);
}
/// RecordRegionEnd - Indicate the end of a region.
unsigned DwarfWriter::RecordRegionEnd(GlobalVariable *V) {
return DD->RecordRegionEnd(V);
}
/// getRecordSourceLineCount - Count source lines.
unsigned DwarfWriter::getRecordSourceLineCount() {
return DD->getRecordSourceLineCount();
}
/// RecordVariable - Indicate the declaration of a local variable.
///
void DwarfWriter::RecordVariable(GlobalVariable *GV, unsigned FrameIndex) {
DD->RecordVariable(GV, FrameIndex);
}