2004-07-23 17:56:30 +00:00
|
|
|
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
|
2003-11-20 03:32:25 +00:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the LiveInterval analysis pass which is used
|
|
|
|
// by the Linear Scan Register allocator. This pass linearizes the
|
|
|
|
// basic blocks of the function in DFS order and uses the
|
|
|
|
// LiveVariables pass to conservatively compute live intervals for
|
|
|
|
// each virtual and physical register.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "liveintervals"
|
2005-09-21 04:19:09 +00:00
|
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
2004-09-03 18:25:53 +00:00
|
|
|
#include "VirtRegMap.h"
|
2004-05-01 21:24:39 +00:00
|
|
|
#include "llvm/Value.h"
|
2003-12-21 20:19:10 +00:00
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
2003-11-20 03:32:25 +00:00
|
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
2004-09-01 22:55:40 +00:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2004-09-03 18:19:51 +00:00
|
|
|
#include <algorithm>
|
2004-09-03 18:25:53 +00:00
|
|
|
#include <cmath>
|
2006-01-22 23:41:00 +00:00
|
|
|
#include <iostream>
|
2003-11-20 03:32:25 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
2004-08-04 09:46:26 +00:00
|
|
|
RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
|
2003-11-20 03:32:25 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
Statistic<> numIntervals
|
|
|
|
("liveintervals", "Number of original intervals");
|
2004-02-20 20:53:26 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
Statistic<> numIntervalsAfter
|
|
|
|
("liveintervals", "Number of intervals after coalescing");
|
2004-02-20 20:53:26 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
Statistic<> numJoins
|
|
|
|
("liveintervals", "Number of interval joins performed");
|
2004-02-20 20:53:26 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
Statistic<> numPeep
|
|
|
|
("liveintervals", "Number of identity moves eliminated after coalescing");
|
2004-02-20 20:53:26 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
Statistic<> numFolded
|
|
|
|
("liveintervals", "Number of loads/stores folded into instructions");
|
2004-02-20 20:53:26 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
cl::opt<bool>
|
|
|
|
EnableJoining("join-liveintervals",
|
|
|
|
cl::desc("Join compatible live intervals"),
|
|
|
|
cl::init(true));
|
2003-11-20 03:32:25 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
|
|
|
|
{
|
2004-08-04 09:46:26 +00:00
|
|
|
AU.addRequired<LiveVariables>();
|
|
|
|
AU.addPreservedID(PHIEliminationID);
|
|
|
|
AU.addRequiredID(PHIEliminationID);
|
|
|
|
AU.addRequiredID(TwoAddressInstructionPassID);
|
|
|
|
AU.addRequired<LoopInfo>();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
|
|
|
|
2004-01-31 19:59:32 +00:00
|
|
|
void LiveIntervals::releaseMemory()
|
|
|
|
{
|
2004-08-04 09:46:26 +00:00
|
|
|
mi2iMap_.clear();
|
|
|
|
i2miMap_.clear();
|
|
|
|
r2iMap_.clear();
|
|
|
|
r2rMap_.clear();
|
2004-01-31 19:59:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2003-11-20 03:32:25 +00:00
|
|
|
/// runOnMachineFunction - Register allocate the whole function
|
|
|
|
///
|
|
|
|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
|
2004-08-04 09:46:26 +00:00
|
|
|
mf_ = &fn;
|
|
|
|
tm_ = &fn.getTarget();
|
|
|
|
mri_ = tm_->getRegisterInfo();
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
tii_ = tm_->getInstrInfo();
|
2004-08-04 09:46:26 +00:00
|
|
|
lv_ = &getAnalysis<LiveVariables>();
|
2004-08-26 22:22:38 +00:00
|
|
|
allocatableRegs_ = mri_->getAllocatableSet(fn);
|
2004-09-09 19:24:38 +00:00
|
|
|
r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
|
2004-08-04 09:46:26 +00:00
|
|
|
|
2005-04-09 16:17:50 +00:00
|
|
|
// If this function has any live ins, insert a dummy instruction at the
|
|
|
|
// beginning of the function that we will pretend "defines" the values. This
|
|
|
|
// is to make the interval analysis simpler by providing a number.
|
|
|
|
if (fn.livein_begin() != fn.livein_end()) {
|
2005-05-13 07:08:07 +00:00
|
|
|
unsigned FirstLiveIn = fn.livein_begin()->first;
|
2005-04-09 16:17:50 +00:00
|
|
|
|
|
|
|
// Find a reg class that contains this live in.
|
|
|
|
const TargetRegisterClass *RC = 0;
|
|
|
|
for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
|
|
|
|
E = mri_->regclass_end(); RCI != E; ++RCI)
|
|
|
|
if ((*RCI)->contains(FirstLiveIn)) {
|
|
|
|
RC = *RCI;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
MachineInstr *OldFirstMI = fn.begin()->begin();
|
|
|
|
mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
|
|
|
|
FirstLiveIn, FirstLiveIn, RC);
|
|
|
|
assert(OldFirstMI != fn.begin()->begin() &&
|
|
|
|
"copyRetToReg didn't insert anything!");
|
|
|
|
}
|
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
// number MachineInstrs
|
|
|
|
unsigned miIndex = 0;
|
|
|
|
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
|
|
|
|
mbb != mbbEnd; ++mbb)
|
|
|
|
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
|
|
|
|
mi != miEnd; ++mi) {
|
|
|
|
bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
|
|
|
|
assert(inserted && "multiple MachineInstr -> index mappings");
|
|
|
|
i2miMap_.push_back(mi);
|
|
|
|
miIndex += InstrSlots::NUM;
|
|
|
|
}
|
2003-11-20 03:32:25 +00:00
|
|
|
|
2005-04-09 16:17:50 +00:00
|
|
|
// Note intervals due to live-in values.
|
|
|
|
if (fn.livein_begin() != fn.livein_end()) {
|
|
|
|
MachineBasicBlock *Entry = fn.begin();
|
2005-05-13 07:08:07 +00:00
|
|
|
for (MachineFunction::livein_iterator I = fn.livein_begin(),
|
2005-04-09 16:17:50 +00:00
|
|
|
E = fn.livein_end(); I != E; ++I) {
|
|
|
|
handlePhysicalRegisterDef(Entry, Entry->begin(),
|
2005-09-02 00:20:32 +00:00
|
|
|
getOrCreateInterval(I->first), 0, 0, true);
|
2005-05-13 07:08:07 +00:00
|
|
|
for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
|
2005-04-09 16:17:50 +00:00
|
|
|
handlePhysicalRegisterDef(Entry, Entry->begin(),
|
2005-09-02 00:20:32 +00:00
|
|
|
getOrCreateInterval(*AS), 0, 0, true);
|
2005-04-09 16:17:50 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
computeIntervals();
|
2003-11-20 03:32:25 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
numIntervals += getNumIntervals();
|
2004-02-15 10:24:21 +00:00
|
|
|
|
2005-05-14 05:34:15 +00:00
|
|
|
DEBUG(std::cerr << "********** INTERVALS **********\n";
|
|
|
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
|
|
|
I->second.print(std::cerr, mri_);
|
|
|
|
std::cerr << "\n";
|
|
|
|
});
|
2004-07-24 02:59:07 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
// join intervals if requested
|
|
|
|
if (EnableJoining) joinIntervals();
|
|
|
|
|
|
|
|
numIntervalsAfter += getNumIntervals();
|
|
|
|
|
|
|
|
// perform a final pass over the instructions and compute spill
|
|
|
|
// weights, coalesce virtual registers and remove identity moves
|
|
|
|
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
|
|
|
|
|
|
|
|
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
|
|
|
|
mbbi != mbbe; ++mbbi) {
|
|
|
|
MachineBasicBlock* mbb = mbbi;
|
|
|
|
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
|
|
|
|
|
|
|
|
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
|
|
|
|
mii != mie; ) {
|
|
|
|
// if the move will be an identity move delete it
|
|
|
|
unsigned srcReg, dstReg, RegRep;
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
|
2004-08-04 09:46:26 +00:00
|
|
|
(RegRep = rep(srcReg)) == rep(dstReg)) {
|
|
|
|
// remove from def list
|
|
|
|
LiveInterval &interval = getOrCreateInterval(RegRep);
|
|
|
|
// remove index -> MachineInstr and
|
|
|
|
// MachineInstr -> index mappings
|
|
|
|
Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
|
|
|
|
if (mi2i != mi2iMap_.end()) {
|
|
|
|
i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
|
|
|
|
mi2iMap_.erase(mi2i);
|
|
|
|
}
|
|
|
|
mii = mbbi->erase(mii);
|
|
|
|
++numPeep;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
|
|
|
|
const MachineOperand& mop = mii->getOperand(i);
|
|
|
|
if (mop.isRegister() && mop.getReg() &&
|
|
|
|
MRegisterInfo::isVirtualRegister(mop.getReg())) {
|
|
|
|
// replace register with representative register
|
|
|
|
unsigned reg = rep(mop.getReg());
|
2006-05-04 17:52:23 +00:00
|
|
|
mii->getOperand(i).setReg(reg);
|
2004-08-04 09:46:26 +00:00
|
|
|
|
|
|
|
LiveInterval &RegInt = getInterval(reg);
|
|
|
|
RegInt.weight +=
|
2004-10-25 18:40:47 +00:00
|
|
|
(mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
++mii;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2003-12-24 15:44:53 +00:00
|
|
|
|
2004-09-30 15:59:17 +00:00
|
|
|
DEBUG(dump());
|
2004-08-04 09:46:26 +00:00
|
|
|
return true;
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
|
|
|
|
2004-09-30 15:59:17 +00:00
|
|
|
/// print - Implement the dump method.
|
2004-12-07 04:03:45 +00:00
|
|
|
void LiveIntervals::print(std::ostream &O, const Module* ) const {
|
2004-09-30 15:59:17 +00:00
|
|
|
O << "********** INTERVALS **********\n";
|
2005-07-27 23:03:38 +00:00
|
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
|
|
I->second.print(std::cerr, mri_);
|
|
|
|
std::cerr << "\n";
|
|
|
|
}
|
2004-09-30 15:59:17 +00:00
|
|
|
|
|
|
|
O << "********** MACHINEINSTRS **********\n";
|
|
|
|
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
|
|
|
|
mbbi != mbbe; ++mbbi) {
|
|
|
|
O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
|
|
|
|
for (MachineBasicBlock::iterator mii = mbbi->begin(),
|
|
|
|
mie = mbbi->end(); mii != mie; ++mii) {
|
2004-09-30 16:10:45 +00:00
|
|
|
O << getInstructionIndex(mii) << '\t' << *mii;
|
2004-09-30 15:59:17 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<LiveInterval*> LiveIntervals::
|
|
|
|
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
|
2004-08-27 18:59:22 +00:00
|
|
|
// since this is called after the analysis is done we don't know if
|
|
|
|
// LiveVariables is available
|
|
|
|
lv_ = getAnalysisToUpdate<LiveVariables>();
|
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
std::vector<LiveInterval*> added;
|
|
|
|
|
|
|
|
assert(li.weight != HUGE_VAL &&
|
|
|
|
"attempt to spill already spilled interval!");
|
|
|
|
|
|
|
|
DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
|
|
|
|
<< li << '\n');
|
|
|
|
|
|
|
|
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
|
|
|
|
|
|
|
|
for (LiveInterval::Ranges::const_iterator
|
|
|
|
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
|
|
|
|
unsigned index = getBaseIndex(i->start);
|
|
|
|
unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
|
|
|
|
for (; index != end; index += InstrSlots::NUM) {
|
|
|
|
// skip deleted instructions
|
|
|
|
while (index != end && !getInstructionFromIndex(index))
|
|
|
|
index += InstrSlots::NUM;
|
|
|
|
if (index == end) break;
|
|
|
|
|
2006-01-03 07:41:37 +00:00
|
|
|
MachineInstr *MI = getInstructionFromIndex(index);
|
2004-08-04 09:46:26 +00:00
|
|
|
|
2005-09-09 19:17:47 +00:00
|
|
|
// NewRegLiveIn - This instruction might have multiple uses of the spilled
|
|
|
|
// register. In this case, for the first use, keep track of the new vreg
|
|
|
|
// that we reload it into. If we see a second use, reuse this vreg
|
|
|
|
// instead of creating live ranges for two reloads.
|
|
|
|
unsigned NewRegLiveIn = 0;
|
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
for_operand:
|
2006-01-03 07:41:37 +00:00
|
|
|
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
|
|
|
|
MachineOperand& mop = MI->getOperand(i);
|
2004-08-04 09:46:26 +00:00
|
|
|
if (mop.isRegister() && mop.getReg() == li.reg) {
|
2005-09-09 19:17:47 +00:00
|
|
|
if (NewRegLiveIn && mop.isUse()) {
|
|
|
|
// We already emitted a reload of this value, reuse it for
|
|
|
|
// subsequent operands.
|
2006-05-04 17:52:23 +00:00
|
|
|
MI->getOperand(i).setReg(NewRegLiveIn);
|
2005-09-09 19:17:47 +00:00
|
|
|
DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
|
|
|
|
<< " for operand #" << i << '\n');
|
2006-01-03 07:41:37 +00:00
|
|
|
} else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
|
2005-09-09 19:17:47 +00:00
|
|
|
// Attempt to fold the memory reference into the instruction. If we
|
|
|
|
// can do this, we don't need to insert spill code.
|
2004-08-27 18:59:22 +00:00
|
|
|
if (lv_)
|
2006-01-03 07:41:37 +00:00
|
|
|
lv_->instructionChanged(MI, fmi);
|
2006-04-30 08:41:47 +00:00
|
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
2006-05-01 21:16:03 +00:00
|
|
|
vrm.virtFolded(li.reg, MI, i, fmi);
|
2006-01-03 07:41:37 +00:00
|
|
|
mi2iMap_.erase(MI);
|
2004-08-04 09:46:26 +00:00
|
|
|
i2miMap_[index/InstrSlots::NUM] = fmi;
|
|
|
|
mi2iMap_[fmi] = index;
|
2006-01-03 07:41:37 +00:00
|
|
|
MI = MBB.insert(MBB.erase(MI), fmi);
|
2004-08-04 09:46:26 +00:00
|
|
|
++numFolded;
|
2004-09-30 16:10:45 +00:00
|
|
|
// Folding the load/store can completely change the instruction in
|
|
|
|
// unpredictable ways, rescan it from the beginning.
|
2004-08-04 09:46:26 +00:00
|
|
|
goto for_operand;
|
2004-09-30 16:10:45 +00:00
|
|
|
} else {
|
2004-09-30 15:59:17 +00:00
|
|
|
// This is tricky. We need to add information in the interval about
|
|
|
|
// the spill code so we have to use our extra load/store slots.
|
2004-08-04 09:46:26 +00:00
|
|
|
//
|
2004-09-30 15:59:17 +00:00
|
|
|
// If we have a use we are going to have a load so we start the
|
|
|
|
// interval from the load slot onwards. Otherwise we start from the
|
|
|
|
// def slot.
|
2004-08-04 09:46:26 +00:00
|
|
|
unsigned start = (mop.isUse() ?
|
|
|
|
getLoadIndex(index) :
|
|
|
|
getDefIndex(index));
|
2004-09-30 15:59:17 +00:00
|
|
|
// If we have a def we are going to have a store right after it so
|
|
|
|
// we end the interval after the use of the next
|
|
|
|
// instruction. Otherwise we end after the use of this instruction.
|
2004-08-04 09:46:26 +00:00
|
|
|
unsigned end = 1 + (mop.isDef() ?
|
|
|
|
getStoreIndex(index) :
|
|
|
|
getUseIndex(index));
|
|
|
|
|
|
|
|
// create a new register for this spill
|
2005-09-09 19:17:47 +00:00
|
|
|
NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
|
2006-05-04 17:52:23 +00:00
|
|
|
MI->getOperand(i).setReg(NewRegLiveIn);
|
2004-08-04 09:46:26 +00:00
|
|
|
vrm.grow();
|
2005-09-09 19:17:47 +00:00
|
|
|
vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
|
|
|
|
LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
|
2004-08-04 09:46:26 +00:00
|
|
|
assert(nI.empty());
|
2004-09-30 15:59:17 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
// the spill weight is now infinity as it
|
|
|
|
// cannot be spilled again
|
2005-01-08 19:55:00 +00:00
|
|
|
nI.weight = float(HUGE_VAL);
|
2004-08-04 09:46:26 +00:00
|
|
|
LiveRange LR(start, end, nI.getNextValue());
|
|
|
|
DEBUG(std::cerr << " +" << LR);
|
|
|
|
nI.addRange(LR);
|
|
|
|
added.push_back(&nI);
|
2004-09-30 15:59:17 +00:00
|
|
|
|
2004-08-27 18:59:22 +00:00
|
|
|
// update live variables if it is available
|
|
|
|
if (lv_)
|
2006-01-03 07:41:37 +00:00
|
|
|
lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
|
2005-09-09 19:17:47 +00:00
|
|
|
|
|
|
|
// If this is a live in, reuse it for subsequent live-ins. If it's
|
|
|
|
// a def, we can't do this.
|
|
|
|
if (!mop.isUse()) NewRegLiveIn = 0;
|
|
|
|
|
2004-08-27 18:59:22 +00:00
|
|
|
DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2004-02-15 10:24:21 +00:00
|
|
|
}
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2004-02-15 10:24:21 +00:00
|
|
|
}
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2004-05-30 07:24:39 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
return added;
|
2004-02-15 10:24:21 +00:00
|
|
|
}
|
|
|
|
|
2003-11-20 03:32:25 +00:00
|
|
|
void LiveIntervals::printRegName(unsigned reg) const
|
|
|
|
{
|
2004-08-04 09:46:26 +00:00
|
|
|
if (MRegisterInfo::isPhysicalRegister(reg))
|
|
|
|
std::cerr << mri_->getName(reg);
|
|
|
|
else
|
|
|
|
std::cerr << "%reg" << reg;
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
|
|
|
|
MachineBasicBlock::iterator mi,
|
2004-06-21 13:10:56 +00:00
|
|
|
LiveInterval& interval)
|
2003-11-20 03:32:25 +00:00
|
|
|
{
|
2004-08-04 09:46:26 +00:00
|
|
|
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
|
|
|
|
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
|
|
|
|
|
2004-08-04 09:46:56 +00:00
|
|
|
// Virtual registers may be defined multiple times (due to phi
|
|
|
|
// elimination and 2-addr elimination). Much of what we do only has to be
|
|
|
|
// done once for the vreg. We use an empty interval to detect the first
|
2004-08-04 09:46:26 +00:00
|
|
|
// time we see a vreg.
|
|
|
|
if (interval.empty()) {
|
|
|
|
// Get the Idx of the defining instructions.
|
|
|
|
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
|
|
|
|
|
|
|
|
unsigned ValNum = interval.getNextValue();
|
|
|
|
assert(ValNum == 0 && "First value in interval is not 0?");
|
|
|
|
ValNum = 0; // Clue in the optimizer.
|
|
|
|
|
|
|
|
// Loop over all of the blocks that the vreg is defined in. There are
|
|
|
|
// two cases we have to handle here. The most common case is a vreg
|
|
|
|
// whose lifetime is contained within a basic block. In this case there
|
|
|
|
// will be a single kill, in MBB, which comes after the definition.
|
|
|
|
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
|
|
|
|
// FIXME: what about dead vars?
|
|
|
|
unsigned killIdx;
|
|
|
|
if (vi.Kills[0] != mi)
|
|
|
|
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
|
|
|
|
else
|
|
|
|
killIdx = defIndex+1;
|
|
|
|
|
|
|
|
// If the kill happens after the definition, we have an intra-block
|
|
|
|
// live range.
|
|
|
|
if (killIdx > defIndex) {
|
2004-08-04 09:46:56 +00:00
|
|
|
assert(vi.AliveBlocks.empty() &&
|
2004-08-04 09:46:26 +00:00
|
|
|
"Shouldn't be alive across any blocks!");
|
|
|
|
LiveRange LR(defIndex, killIdx, ValNum);
|
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << " +" << LR << "\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
2004-07-19 02:15:56 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
// The other case we handle is when a virtual register lives to the end
|
|
|
|
// of the defining block, potentially live across some blocks, then is
|
|
|
|
// live into some number of blocks, but gets killed. Start by adding a
|
|
|
|
// range that goes from this definition to the end of the defining block.
|
2004-08-31 17:39:15 +00:00
|
|
|
LiveRange NewLR(defIndex,
|
|
|
|
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
|
|
|
|
ValNum);
|
2004-08-04 09:46:26 +00:00
|
|
|
DEBUG(std::cerr << " +" << NewLR);
|
|
|
|
interval.addRange(NewLR);
|
|
|
|
|
|
|
|
// Iterate over all of the blocks that the variable is completely
|
|
|
|
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
|
|
|
|
// live interval.
|
|
|
|
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
|
|
|
|
if (vi.AliveBlocks[i]) {
|
|
|
|
MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
|
|
|
|
if (!mbb->empty()) {
|
|
|
|
LiveRange LR(getInstructionIndex(&mbb->front()),
|
2004-08-31 17:39:15 +00:00
|
|
|
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
|
2004-08-04 09:46:26 +00:00
|
|
|
ValNum);
|
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << " +" << LR);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finally, this virtual register is live from the start of any killing
|
|
|
|
// block to the 'use' slot of the killing instruction.
|
|
|
|
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
|
|
|
|
MachineInstr *Kill = vi.Kills[i];
|
|
|
|
LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
|
2004-08-31 17:39:15 +00:00
|
|
|
getUseIndex(getInstructionIndex(Kill))+1,
|
|
|
|
ValNum);
|
2004-08-04 09:46:26 +00:00
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << " +" << LR);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// If this is the second time we see a virtual register definition, it
|
|
|
|
// must be due to phi elimination or two addr elimination. If this is
|
|
|
|
// the result of two address elimination, then the vreg is the first
|
|
|
|
// operand, and is a def-and-use.
|
2004-08-04 09:46:56 +00:00
|
|
|
if (mi->getOperand(0).isRegister() &&
|
2004-08-04 09:46:26 +00:00
|
|
|
mi->getOperand(0).getReg() == interval.reg &&
|
|
|
|
mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
|
|
|
|
// If this is a two-address definition, then we have already processed
|
|
|
|
// the live range. The only problem is that we didn't realize there
|
|
|
|
// are actually two values in the live interval. Because of this we
|
|
|
|
// need to take the LiveRegion that defines this register and split it
|
|
|
|
// into two values.
|
|
|
|
unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
|
|
|
|
unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
|
|
|
|
|
|
|
|
// Delete the initial value, which should be short and continuous,
|
|
|
|
// becuase the 2-addr copy must be in the same MBB as the redef.
|
|
|
|
interval.removeRange(DefIndex, RedefIndex);
|
2004-08-04 09:46:56 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
|
|
|
|
DEBUG(std::cerr << " replace range with " << LR);
|
|
|
|
interval.addRange(LR);
|
|
|
|
|
|
|
|
// If this redefinition is dead, we need to add a dummy unit live
|
|
|
|
// range covering the def slot.
|
2005-08-23 22:51:41 +00:00
|
|
|
if (lv_->RegisterDefIsDead(mi, interval.reg))
|
|
|
|
interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
|
2004-08-04 09:46:26 +00:00
|
|
|
|
|
|
|
DEBUG(std::cerr << "RESULT: " << interval);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Otherwise, this must be because of phi elimination. If this is the
|
|
|
|
// first redefinition of the vreg that we have seen, go back and change
|
|
|
|
// the live range in the PHI block to be a different value number.
|
|
|
|
if (interval.containsOneValue()) {
|
|
|
|
assert(vi.Kills.size() == 1 &&
|
|
|
|
"PHI elimination vreg should have one kill, the PHI itself!");
|
|
|
|
|
|
|
|
// Remove the old range that we now know has an incorrect number.
|
|
|
|
MachineInstr *Killer = vi.Kills[0];
|
|
|
|
unsigned Start = getInstructionIndex(Killer->getParent()->begin());
|
|
|
|
unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
|
|
|
|
DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
|
|
|
|
<< interval << "\n");
|
|
|
|
interval.removeRange(Start, End);
|
|
|
|
DEBUG(std::cerr << "RESULT: " << interval);
|
|
|
|
|
|
|
|
// Replace the interval with one of a NEW value number.
|
|
|
|
LiveRange LR(Start, End, interval.getNextValue());
|
|
|
|
DEBUG(std::cerr << " replace range with " << LR);
|
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << "RESULT: " << interval);
|
|
|
|
}
|
|
|
|
|
|
|
|
// In the case of PHI elimination, each variable definition is only
|
|
|
|
// live until the end of the block. We've already taken care of the
|
|
|
|
// rest of the live range.
|
|
|
|
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
|
2004-08-04 09:46:56 +00:00
|
|
|
LiveRange LR(defIndex,
|
2004-08-04 09:46:26 +00:00
|
|
|
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
|
|
|
|
interval.getNextValue());
|
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << " +" << LR);
|
2003-12-18 08:48:48 +00:00
|
|
|
}
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2003-11-20 03:32:25 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
DEBUG(std::cerr << '\n');
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
|
|
|
|
2004-07-23 21:24:19 +00:00
|
|
|
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
|
2003-11-20 03:32:25 +00:00
|
|
|
MachineBasicBlock::iterator mi,
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
LiveInterval& interval,
|
2005-09-02 00:20:32 +00:00
|
|
|
unsigned SrcReg, unsigned DestReg,
|
|
|
|
bool isLiveIn)
|
2003-11-20 03:32:25 +00:00
|
|
|
{
|
2004-08-04 09:46:26 +00:00
|
|
|
// A physical register cannot be live across basic block, so its
|
|
|
|
// lifetime must end somewhere in its defining basic block.
|
|
|
|
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
|
|
|
|
typedef LiveVariables::killed_iterator KillIter;
|
|
|
|
|
|
|
|
unsigned baseIndex = getInstructionIndex(mi);
|
|
|
|
unsigned start = getDefIndex(baseIndex);
|
|
|
|
unsigned end = start;
|
|
|
|
|
|
|
|
// If it is not used after definition, it is considered dead at
|
|
|
|
// the instruction defining it. Hence its interval is:
|
|
|
|
// [defSlot(def), defSlot(def)+1)
|
2005-08-23 22:51:41 +00:00
|
|
|
if (lv_->RegisterDefIsDead(mi, interval.reg)) {
|
|
|
|
DEBUG(std::cerr << " dead");
|
|
|
|
end = getDefIndex(start) + 1;
|
|
|
|
goto exit;
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2003-11-20 03:32:25 +00:00
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
// If it is not dead on definition, it must be killed by a
|
|
|
|
// subsequent instruction. Hence its interval is:
|
|
|
|
// [defSlot(def), useSlot(kill)+1)
|
2005-09-02 00:20:32 +00:00
|
|
|
while (++mi != MBB->end()) {
|
2004-08-04 09:46:26 +00:00
|
|
|
baseIndex += InstrSlots::NUM;
|
2005-08-23 22:51:41 +00:00
|
|
|
if (lv_->KillsRegister(mi, interval.reg)) {
|
|
|
|
DEBUG(std::cerr << " killed");
|
|
|
|
end = getUseIndex(baseIndex) + 1;
|
|
|
|
goto exit;
|
2004-07-23 21:24:19 +00:00
|
|
|
}
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2005-09-02 00:20:32 +00:00
|
|
|
|
|
|
|
// The only case we should have a dead physreg here without a killing or
|
|
|
|
// instruction where we know it's dead is if it is live-in to the function
|
|
|
|
// and never used.
|
|
|
|
assert(isLiveIn && "physreg was not killed in defining block!");
|
|
|
|
end = getDefIndex(start) + 1; // It's dead.
|
2004-01-31 23:13:30 +00:00
|
|
|
|
2003-11-20 03:32:25 +00:00
|
|
|
exit:
|
2004-08-04 09:46:26 +00:00
|
|
|
assert(start < end && "did not find end of interval?");
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
|
|
|
|
// Finally, if this is defining a new range for the physical register, and if
|
|
|
|
// that physreg is just a copy from a vreg, and if THAT vreg was a copy from
|
|
|
|
// the physreg, then the new fragment has the same value as the one copied
|
|
|
|
// into the vreg.
|
|
|
|
if (interval.reg == DestReg && !interval.empty() &&
|
2005-03-10 20:59:51 +00:00
|
|
|
MRegisterInfo::isVirtualRegister(SrcReg)) {
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
|
|
|
|
// Get the live interval for the vreg, see if it is defined by a copy.
|
|
|
|
LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
|
|
|
|
|
|
|
|
if (SrcInterval.containsOneValue()) {
|
|
|
|
assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
|
|
|
|
|
|
|
|
// Get the first index of the first range. Though the interval may have
|
|
|
|
// multiple liveranges in it, we only check the first.
|
|
|
|
unsigned StartIdx = SrcInterval.begin()->start;
|
|
|
|
MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
|
|
|
|
|
|
|
|
// Check to see if the vreg was defined by a copy instruction, and that
|
|
|
|
// the source was this physreg.
|
|
|
|
unsigned VRegSrcSrc, VRegSrcDest;
|
|
|
|
if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
|
|
|
|
SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
|
|
|
|
// Okay, now we know that the vreg was defined by a copy from this
|
|
|
|
// physreg. Find the value number being copied and use it as the value
|
|
|
|
// for this range.
|
|
|
|
const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
|
|
|
|
if (DefRange) {
|
|
|
|
LiveRange LR(start, end, DefRange->ValId);
|
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << " +" << LR << '\n');
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-08-04 09:46:26 +00:00
|
|
|
LiveRange LR(start, end, interval.getNextValue());
|
|
|
|
interval.addRange(LR);
|
|
|
|
DEBUG(std::cerr << " +" << LR << '\n');
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
|
|
|
|
2004-07-23 21:24:19 +00:00
|
|
|
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
|
|
|
|
MachineBasicBlock::iterator MI,
|
|
|
|
unsigned reg) {
|
|
|
|
if (MRegisterInfo::isVirtualRegister(reg))
|
|
|
|
handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
|
2004-08-26 22:22:38 +00:00
|
|
|
else if (allocatableRegs_[reg]) {
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
unsigned SrcReg = 0, DestReg = 0;
|
2006-01-10 05:41:59 +00:00
|
|
|
if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
|
|
|
|
SrcReg = DestReg = 0;
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
|
|
|
|
handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
|
|
|
|
SrcReg, DestReg);
|
2004-07-23 21:24:19 +00:00
|
|
|
for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
|
Allow the live interval analysis pass to be a bit more aggressive about
numbering values in live ranges for physical registers.
The alpha backend currently generates code that looks like this:
vreg = preg
...
preg = vreg
use preg
...
preg = vreg
use preg
etc. Because vreg contains the value of preg coming in, each of the
copies back into preg contain that initial value as well.
In the case of the Alpha, this allows this testcase:
void "foo"(int %blah) {
store int 5, int *%MyVar
store int 12, int* %MyVar2
ret void
}
to compile to:
foo:
ldgp $29, 0($27)
ldiq $0,5
stl $0,MyVar
ldiq $0,12
stl $0,MyVar2
ret $31,($26),1
instead of:
foo:
ldgp $29, 0($27)
bis $29,$29,$0
ldiq $1,5
bis $0,$0,$29
stl $1,MyVar
ldiq $1,12
bis $0,$0,$29
stl $1,MyVar2
ret $31,($26),1
This does not seem to have any noticable effect on X86 code.
This fixes PR535.
llvm-svn: 20536
2005-03-09 23:05:19 +00:00
|
|
|
handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
|
|
|
|
SrcReg, DestReg);
|
2004-07-23 21:24:19 +00:00
|
|
|
}
|
2004-01-31 14:37:41 +00:00
|
|
|
}
|
|
|
|
|
2003-11-20 03:32:25 +00:00
|
|
|
/// computeIntervals - computes the live intervals for virtual
|
2004-01-31 14:37:41 +00:00
|
|
|
/// registers. for some ordering of the machine instructions [1,N] a
|
2004-01-31 19:59:32 +00:00
|
|
|
/// live interval is an interval [i, j) where 1 <= i <= j < N for
|
2003-11-20 03:32:25 +00:00
|
|
|
/// which a variable is live
|
|
|
|
void LiveIntervals::computeIntervals()
|
|
|
|
{
|
2004-08-04 09:46:26 +00:00
|
|
|
DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
|
|
|
|
DEBUG(std::cerr << "********** Function: "
|
|
|
|
<< ((Value*)mf_->getFunction())->getName() << '\n');
|
2005-04-09 16:17:50 +00:00
|
|
|
bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
|
2004-08-04 09:46:26 +00:00
|
|
|
|
2004-08-04 09:46:56 +00:00
|
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
|
2004-08-04 09:46:26 +00:00
|
|
|
I != E; ++I) {
|
|
|
|
MachineBasicBlock* mbb = I;
|
|
|
|
DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
|
|
|
|
|
2005-04-09 16:17:50 +00:00
|
|
|
MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
|
|
|
|
if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
|
|
|
|
for (; mi != miEnd; ++mi) {
|
2004-08-04 09:46:26 +00:00
|
|
|
const TargetInstrDescriptor& tid =
|
|
|
|
tm_->getInstrInfo()->get(mi->getOpcode());
|
2004-09-30 16:10:45 +00:00
|
|
|
DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
|
2004-08-04 09:46:26 +00:00
|
|
|
|
|
|
|
// handle implicit defs
|
|
|
|
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
|
|
|
|
handleRegisterDef(mbb, mi, *id);
|
|
|
|
|
|
|
|
// handle explicit defs
|
|
|
|
for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
|
|
|
|
MachineOperand& mop = mi->getOperand(i);
|
|
|
|
// handle register defs - build intervals
|
|
|
|
if (mop.isRegister() && mop.getReg() && mop.isDef())
|
|
|
|
handleRegisterDef(mbb, mi, mop.getReg());
|
|
|
|
}
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
2004-08-04 09:46:26 +00:00
|
|
|
}
|
2003-11-20 03:32:25 +00:00
|
|
|
}
|
2003-12-05 10:38:28 +00:00
|
|
|
|
2005-10-21 06:49:50 +00:00
|
|
|
/// IntA is defined as a copy from IntB and we know it only has one value
|
|
|
|
/// number. If all of the places that IntA and IntB overlap are defined by
|
|
|
|
/// copies from IntA to IntB, we know that these two ranges can really be
|
|
|
|
/// merged if we adjust the value numbers. If it is safe, adjust the value
|
2005-10-26 18:41:41 +00:00
|
|
|
/// numbers and return true, allowing coalescing to occur.
|
2005-10-21 06:49:50 +00:00
|
|
|
bool LiveIntervals::
|
|
|
|
AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
|
|
|
|
LiveInterval &IntB,
|
|
|
|
unsigned CopyIdx) {
|
|
|
|
std::vector<LiveRange*> Ranges;
|
|
|
|
IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
|
|
|
|
|
|
|
|
assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
|
|
|
|
|
|
|
|
unsigned IntBRep = rep(IntB.reg);
|
|
|
|
|
|
|
|
// Check to see if all of the overlaps (entries in Ranges) are defined by a
|
|
|
|
// copy from IntA. If not, exit.
|
|
|
|
for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
|
|
|
|
unsigned Idx = Ranges[i]->start;
|
|
|
|
MachineInstr *MI = getInstructionFromIndex(Idx);
|
|
|
|
unsigned SrcReg, DestReg;
|
|
|
|
if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
|
|
|
|
|
|
|
|
// If this copy isn't actually defining this range, it must be a live
|
|
|
|
// range spanning basic blocks or something.
|
|
|
|
if (rep(DestReg) != rep(IntA.reg)) return false;
|
|
|
|
|
|
|
|
// Check to see if this is coming from IntB. If not, bail out.
|
|
|
|
if (rep(SrcReg) != IntBRep) return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, we can change this one. Get the IntB value number that IntA is
|
|
|
|
// copied from.
|
|
|
|
unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
|
|
|
|
|
|
|
|
// Change all of the value numbers to the same as what we IntA is copied from.
|
|
|
|
for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
|
|
|
|
Ranges[i]->ValId = ActualValNo;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2004-07-19 14:08:10 +00:00
|
|
|
void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
|
2004-07-24 02:59:07 +00:00
|
|
|
DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
|
|
|
|
|
|
|
|
for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
|
|
|
|
mi != mie; ++mi) {
|
|
|
|
DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
|
|
|
|
|
|
|
|
// we only join virtual registers with allocatable
|
|
|
|
// physical registers since we do not have liveness information
|
|
|
|
// on not allocatable physical registers
|
2005-10-21 06:49:50 +00:00
|
|
|
unsigned SrcReg, DestReg;
|
|
|
|
if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
|
|
|
|
(MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
|
|
|
|
(MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){
|
2004-08-04 09:46:56 +00:00
|
|
|
|
2004-07-24 02:59:07 +00:00
|
|
|
// Get representative registers.
|
2005-10-21 06:49:50 +00:00
|
|
|
SrcReg = rep(SrcReg);
|
|
|
|
DestReg = rep(DestReg);
|
2004-08-04 09:46:56 +00:00
|
|
|
|
2004-07-24 02:59:07 +00:00
|
|
|
// If they are already joined we continue.
|
2005-10-21 06:49:50 +00:00
|
|
|
if (SrcReg == DestReg)
|
2004-07-24 02:59:07 +00:00
|
|
|
continue;
|
2004-08-04 09:46:56 +00:00
|
|
|
|
2004-07-24 02:59:07 +00:00
|
|
|
// If they are both physical registers, we cannot join them.
|
2005-10-21 06:49:50 +00:00
|
|
|
if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
|
|
|
|
MRegisterInfo::isPhysicalRegister(DestReg))
|
2004-07-24 02:59:07 +00:00
|
|
|
continue;
|
|
|
|
|
2006-05-09 06:37:48 +00:00
|
|
|
// If they are not of compatible register classes, we cannot join them.
|
|
|
|
bool Swap = false;
|
|
|
|
if (!compatibleRegisterClasses(SrcReg, DestReg, Swap)) {
|
|
|
|
DEBUG(std::cerr << "Register classes aren't compatible!\n");
|
2004-07-24 02:59:07 +00:00
|
|
|
continue;
|
2006-05-09 06:37:48 +00:00
|
|
|
}
|
2004-07-24 02:59:07 +00:00
|
|
|
|
2005-10-21 06:49:50 +00:00
|
|
|
LiveInterval &SrcInt = getInterval(SrcReg);
|
|
|
|
LiveInterval &DestInt = getInterval(DestReg);
|
|
|
|
assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
|
2004-07-24 02:59:07 +00:00
|
|
|
"Register mapping is horribly broken!");
|
2004-07-24 04:32:22 +00:00
|
|
|
|
2005-10-21 06:49:50 +00:00
|
|
|
DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
|
|
|
|
<< ": ");
|
2004-07-24 04:32:22 +00:00
|
|
|
|
2004-07-24 03:32:06 +00:00
|
|
|
// If two intervals contain a single value and are joined by a copy, it
|
|
|
|
// does not matter if the intervals overlap, they can always be joined.
|
2005-10-21 06:49:50 +00:00
|
|
|
bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();
|
2004-07-24 02:59:07 +00:00
|
|
|
|
|
|
|
unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
|
2005-10-21 06:49:50 +00:00
|
|
|
|
|
|
|
// If the intervals think that this is joinable, do so now.
|
|
|
|
if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
|
|
|
|
Joinable = true;
|
|
|
|
|
|
|
|
// If DestInt is actually a copy from SrcInt (which we know) that is used
|
|
|
|
// to define another value of SrcInt, we can change the other range of
|
|
|
|
// SrcInt to be the value of the range that defines DestInt, allowing a
|
2005-10-26 18:41:41 +00:00
|
|
|
// coalesce.
|
2005-10-21 06:49:50 +00:00
|
|
|
if (!Joinable && DestInt.containsOneValue() &&
|
|
|
|
AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
|
|
|
|
Joinable = true;
|
|
|
|
|
|
|
|
if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
|
|
|
|
DEBUG(std::cerr << "Interference!\n");
|
|
|
|
} else {
|
|
|
|
DestInt.join(SrcInt, MIDefIdx);
|
|
|
|
DEBUG(std::cerr << "Joined. Result = " << DestInt << "\n");
|
|
|
|
|
2006-05-09 06:37:48 +00:00
|
|
|
if (!Swap && !MRegisterInfo::isPhysicalRegister(SrcReg)) {
|
2005-10-21 06:49:50 +00:00
|
|
|
r2iMap_.erase(SrcReg);
|
|
|
|
r2rMap_[SrcReg] = DestReg;
|
2004-07-24 02:59:07 +00:00
|
|
|
} else {
|
|
|
|
// Otherwise merge the data structures the other way so we don't lose
|
|
|
|
// the physreg information.
|
2005-10-21 06:49:50 +00:00
|
|
|
r2rMap_[DestReg] = SrcReg;
|
|
|
|
DestInt.reg = SrcReg;
|
|
|
|
SrcInt.swap(DestInt);
|
|
|
|
r2iMap_.erase(DestReg);
|
2004-01-22 23:08:45 +00:00
|
|
|
}
|
2004-07-24 02:59:07 +00:00
|
|
|
++numJoins;
|
|
|
|
}
|
2003-12-18 08:48:48 +00:00
|
|
|
}
|
2004-07-24 02:59:07 +00:00
|
|
|
}
|
2003-12-18 08:48:48 +00:00
|
|
|
}
|
|
|
|
|
2004-07-19 14:40:29 +00:00
|
|
|
namespace {
|
|
|
|
// DepthMBBCompare - Comparison predicate that sort first based on the loop
|
|
|
|
// depth of the basic block (the unsigned), and then on the MBB number.
|
|
|
|
struct DepthMBBCompare {
|
|
|
|
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
|
|
|
|
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
|
|
|
|
if (LHS.first > RHS.first) return true; // Deeper loops first
|
2004-08-04 09:46:56 +00:00
|
|
|
return LHS.first == RHS.first &&
|
2004-08-04 09:46:26 +00:00
|
|
|
LHS.second->getNumber() < RHS.second->getNumber();
|
2004-07-19 14:40:29 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
void LiveIntervals::joinIntervals() {
|
|
|
|
DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
|
2004-07-19 14:08:10 +00:00
|
|
|
|
2004-07-19 14:40:29 +00:00
|
|
|
const LoopInfo &LI = getAnalysis<LoopInfo>();
|
|
|
|
if (LI.begin() == LI.end()) {
|
|
|
|
// If there are no loops in the function, join intervals in function order.
|
2004-07-19 14:08:10 +00:00
|
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
|
|
|
|
I != E; ++I)
|
|
|
|
joinIntervalsInMachineBB(I);
|
2004-07-19 14:40:29 +00:00
|
|
|
} else {
|
|
|
|
// Otherwise, join intervals in inner loops before other intervals.
|
|
|
|
// Unfortunately we can't just iterate over loop hierarchy here because
|
|
|
|
// there may be more MBB's than BB's. Collect MBB's for sorting.
|
|
|
|
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
|
|
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
|
|
|
|
I != E; ++I)
|
|
|
|
MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
|
|
|
|
|
|
|
|
// Sort by loop depth.
|
|
|
|
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
|
|
|
|
|
2004-08-04 09:46:56 +00:00
|
|
|
// Finally, join intervals in loop nest order.
|
2004-07-19 14:40:29 +00:00
|
|
|
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
|
|
|
|
joinIntervalsInMachineBB(MBBs[i].second);
|
|
|
|
}
|
2004-07-25 03:24:11 +00:00
|
|
|
|
|
|
|
DEBUG(std::cerr << "*** Register mapping ***\n");
|
2004-09-08 03:01:50 +00:00
|
|
|
DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
|
|
|
|
if (r2rMap_[i])
|
|
|
|
std::cerr << " reg " << i << " -> reg " << r2rMap_[i] << "\n");
|
2004-07-19 14:08:10 +00:00
|
|
|
}
|
|
|
|
|
2006-05-09 06:37:48 +00:00
|
|
|
/// Return true if the two specified registers belong to same or compatible
|
|
|
|
/// register classes. The registers may be either phys or virt regs.
|
|
|
|
bool LiveIntervals::compatibleRegisterClasses(unsigned RegA, unsigned RegB,
|
|
|
|
bool &Swap) const {
|
2004-07-24 02:59:07 +00:00
|
|
|
|
|
|
|
// Get the register classes for the first reg.
|
2004-10-26 05:29:18 +00:00
|
|
|
if (MRegisterInfo::isPhysicalRegister(RegA)) {
|
2005-04-21 22:36:52 +00:00
|
|
|
assert(MRegisterInfo::isVirtualRegister(RegB) &&
|
2004-10-26 05:29:18 +00:00
|
|
|
"Shouldn't consider two physregs!");
|
2006-05-09 06:37:48 +00:00
|
|
|
return mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
|
2004-10-26 05:29:18 +00:00
|
|
|
}
|
2004-07-24 02:59:07 +00:00
|
|
|
|
|
|
|
// Compare against the regclass for the second reg.
|
2006-05-09 06:37:48 +00:00
|
|
|
const TargetRegisterClass *RegClassA = mf_->getSSARegMap()->getRegClass(RegA);
|
|
|
|
if (MRegisterInfo::isVirtualRegister(RegB)) {
|
|
|
|
const TargetRegisterClass *RegClassB=mf_->getSSARegMap()->getRegClass(RegB);
|
|
|
|
if (RegClassA == RegClassB)
|
|
|
|
return true;
|
|
|
|
else {
|
|
|
|
if (RegClassB->hasSubRegClass(RegClassA)) {
|
|
|
|
Swap = true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return RegClassA->hasSubRegClass(RegClassB);
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
return RegClassA->contains(RegB);
|
2004-07-24 02:59:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
|
|
|
|
const LiveInterval *RHS) const {
|
|
|
|
if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
|
|
|
|
if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
|
|
|
|
return false; // vreg-vreg merge has no aliases!
|
|
|
|
std::swap(LHS, RHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
|
|
|
|
MRegisterInfo::isVirtualRegister(RHS->reg) &&
|
|
|
|
"first interval must describe a physical register");
|
2004-01-23 13:37:51 +00:00
|
|
|
|
2004-07-24 03:32:06 +00:00
|
|
|
for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
|
|
|
|
if (RHS->overlaps(getInterval(*AS)))
|
|
|
|
return true;
|
2004-01-23 13:37:51 +00:00
|
|
|
|
2004-07-24 03:32:06 +00:00
|
|
|
return false;
|
2004-01-23 13:37:51 +00:00
|
|
|
}
|
|
|
|
|
2004-07-24 11:44:15 +00:00
|
|
|
LiveInterval LiveIntervals::createInterval(unsigned reg) {
|
2005-04-21 22:36:52 +00:00
|
|
|
float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
|
2005-01-08 19:55:00 +00:00
|
|
|
(float)HUGE_VAL :0.0F;
|
2004-07-24 11:44:15 +00:00
|
|
|
return LiveInterval(reg, Weight);
|
2004-04-09 18:07:57 +00:00
|
|
|
}
|