mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-23 20:34:58 +00:00
Revert 112442 and 112440 until the compile time problems introduced
by 112440 are resolved. llvm-svn: 112692
This commit is contained in:
parent
b69568ab33
commit
ad593f9d93
@ -27,7 +27,6 @@ class Value;
|
||||
class IVUsers;
|
||||
class ScalarEvolution;
|
||||
class SCEV;
|
||||
class SCEVAddRecExpr;
|
||||
class IVUsers;
|
||||
|
||||
/// IVStrideUse - Keep track of one use of a strided induction variable.
|
||||
@ -123,7 +122,7 @@ class IVUsers : public LoopPass {
|
||||
LoopInfo *LI;
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
SmallPtrSet<Instruction *, 16> Processed;
|
||||
SmallPtrSet<Instruction*,16> Processed;
|
||||
|
||||
/// IVUses - A list of all tracked IV uses of induction variable expressions
|
||||
/// we are interested in.
|
||||
@ -135,16 +134,14 @@ class IVUsers : public LoopPass {
|
||||
|
||||
virtual void releaseMemory();
|
||||
|
||||
const SCEVAddRecExpr *findInterestingAddRec(const SCEV *S) const;
|
||||
bool isInterestingUser(const Instruction *User) const;
|
||||
|
||||
public:
|
||||
static char ID; // Pass ID, replacement for typeid
|
||||
IVUsers();
|
||||
|
||||
/// AddUsersIfInteresting - Inspect the def-use graph starting at the
|
||||
/// specified Instruction and add IVUsers.
|
||||
void AddUsersIfInteresting(Instruction *I);
|
||||
/// AddUsersIfInteresting - Inspect the specified Instruction. If it is a
|
||||
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
||||
/// return true. Otherwise, return false.
|
||||
bool AddUsersIfInteresting(Instruction *I);
|
||||
|
||||
IVStrideUse &AddUser(Instruction *User, Value *Operand);
|
||||
|
||||
|
@ -35,123 +35,112 @@ Pass *llvm::createIVUsersPass() {
|
||||
return new IVUsers();
|
||||
}
|
||||
|
||||
/// findInterestingAddRec - Test whether the given expression is interesting.
|
||||
/// Return the addrec with the current loop which makes it interesting, or
|
||||
/// null if it is not interesting.
|
||||
const SCEVAddRecExpr *IVUsers::findInterestingAddRec(const SCEV *S) const {
|
||||
/// isInteresting - Test whether the given expression is "interesting" when
|
||||
/// used by the given expression, within the context of analyzing the
|
||||
/// given loop.
|
||||
static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
|
||||
ScalarEvolution *SE) {
|
||||
// An addrec is interesting if it's affine or if it has an interesting start.
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
// Keep things simple. Don't touch loop-variant strides.
|
||||
if (AR->getLoop() == L)
|
||||
return AR;
|
||||
// We don't yet know how to do effective SCEV expansions for addrecs
|
||||
// with interesting steps.
|
||||
if (findInterestingAddRec(AR->getStepRecurrence(*SE)))
|
||||
return 0;
|
||||
// Otherwise recurse to see if the start value is interesting.
|
||||
return findInterestingAddRec(AR->getStart());
|
||||
return AR->isAffine() || !L->contains(I);
|
||||
// Otherwise recurse to see if the start value is interesting, and that
|
||||
// the step value is not interesting, since we don't yet know how to
|
||||
// do effective SCEV expansions for addrecs with interesting steps.
|
||||
return isInteresting(AR->getStart(), I, L, SE) &&
|
||||
!isInteresting(AR->getStepRecurrence(*SE), I, L, SE);
|
||||
}
|
||||
|
||||
// An add is interesting if exactly one of its operands is interesting.
|
||||
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
||||
bool AnyInterestingYet = false;
|
||||
for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
|
||||
OI != OE; ++OI)
|
||||
if (const SCEVAddRecExpr *AR = findInterestingAddRec(*OI))
|
||||
return AR;
|
||||
return 0;
|
||||
if (isInteresting(*OI, I, L, SE)) {
|
||||
if (AnyInterestingYet)
|
||||
return false;
|
||||
AnyInterestingYet = true;
|
||||
}
|
||||
return AnyInterestingYet;
|
||||
}
|
||||
|
||||
// Nothing else is interesting here.
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool IVUsers::isInterestingUser(const Instruction *User) const {
|
||||
// Void and FP expressions cannot be reduced.
|
||||
if (!SE->isSCEVable(User->getType()))
|
||||
return false;
|
||||
|
||||
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
|
||||
if (SE->getTypeSizeInBits(User->getType()) > 64)
|
||||
return false;
|
||||
|
||||
// Don't descend into PHI nodes outside the current loop.
|
||||
if (LI->getLoopFor(User->getParent()) != L &&
|
||||
isa<PHINode>(User))
|
||||
return false;
|
||||
|
||||
// Otherwise, it may be interesting.
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
|
||||
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
||||
/// return true. Otherwise, return false.
|
||||
void IVUsers::AddUsersIfInteresting(Instruction *I) {
|
||||
// Stop if we've seen this before.
|
||||
if (!Processed.insert(I))
|
||||
return;
|
||||
|
||||
// If this PHI node is not SCEVable, ignore it.
|
||||
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
|
||||
if (!SE->isSCEVable(I->getType()))
|
||||
return;
|
||||
return false; // Void and FP expressions cannot be reduced.
|
||||
|
||||
// If this PHI node is not an addrec for this loop, ignore it.
|
||||
const SCEVAddRecExpr *Expr = findInterestingAddRec(SE->getSCEV(I));
|
||||
if (!Expr)
|
||||
return;
|
||||
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
|
||||
if (SE->getTypeSizeInBits(I->getType()) > 64)
|
||||
return false;
|
||||
|
||||
// Walk the def-use graph.
|
||||
SmallVector<std::pair<Instruction *, const SCEVAddRecExpr *>, 16> Worklist;
|
||||
Worklist.push_back(std::make_pair(I, Expr));
|
||||
do {
|
||||
std::pair<Instruction *, const SCEVAddRecExpr *> P =
|
||||
Worklist.pop_back_val();
|
||||
Instruction *Op = P.first;
|
||||
const SCEVAddRecExpr *OpAR = P.second;
|
||||
if (!Processed.insert(I))
|
||||
return true; // Instruction already handled.
|
||||
|
||||
// Visit Op's users.
|
||||
SmallPtrSet<Instruction *, 8> VisitedUsers;
|
||||
for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end();
|
||||
UI != E; ++UI) {
|
||||
// Don't visit any individual user more than once.
|
||||
Instruction *User = cast<Instruction>(*UI);
|
||||
if (!VisitedUsers.insert(User))
|
||||
continue;
|
||||
// Get the symbolic expression for this instruction.
|
||||
const SCEV *ISE = SE->getSCEV(I);
|
||||
|
||||
// If it's an affine addrec (which we can pretty safely re-expand) inside
|
||||
// the loop, or a potentially non-affine addrec outside the loop (which
|
||||
// we can evaluate outside of the loop), follow it.
|
||||
if (OpAR->isAffine() || !L->contains(User)) {
|
||||
if (isInterestingUser(User)) {
|
||||
const SCEV *UserExpr = SE->getSCEV(User);
|
||||
// If we've come to an uninteresting expression, stop the traversal and
|
||||
// call this a user.
|
||||
if (!isInteresting(ISE, I, L, SE))
|
||||
return false;
|
||||
|
||||
if (const SCEVAddRecExpr *AR = findInterestingAddRec(UserExpr)) {
|
||||
// Interesting. Keep searching.
|
||||
if (Processed.insert(User))
|
||||
Worklist.push_back(std::make_pair(User, AR));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
SmallPtrSet<Instruction *, 4> UniqueUsers;
|
||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
||||
UI != E; ++UI) {
|
||||
Instruction *User = cast<Instruction>(*UI);
|
||||
if (!UniqueUsers.insert(User))
|
||||
continue;
|
||||
|
||||
// Do not infinitely recurse on PHI nodes.
|
||||
if (isa<PHINode>(User) && Processed.count(User))
|
||||
continue;
|
||||
|
||||
// Descend recursively, but not into PHI nodes outside the current loop.
|
||||
// It's important to see the entire expression outside the loop to get
|
||||
// choices that depend on addressing mode use right, although we won't
|
||||
// consider references outside the loop in all cases.
|
||||
// If User is already in Processed, we don't want to recurse into it again,
|
||||
// but do want to record a second reference in the same instruction.
|
||||
bool AddUserToIVUsers = false;
|
||||
if (LI->getLoopFor(User->getParent()) != L) {
|
||||
if (isa<PHINode>(User) || Processed.count(User) ||
|
||||
!AddUsersIfInteresting(User)) {
|
||||
DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
|
||||
<< " OF SCEV: " << *ISE << '\n');
|
||||
AddUserToIVUsers = true;
|
||||
}
|
||||
|
||||
// Otherwise, this is the point where the def-use chain
|
||||
// becomes uninteresting. Call it an IV User.
|
||||
AddUser(User, Op);
|
||||
} else if (Processed.count(User) ||
|
||||
!AddUsersIfInteresting(User)) {
|
||||
DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
|
||||
<< " OF SCEV: " << *ISE << '\n');
|
||||
AddUserToIVUsers = true;
|
||||
}
|
||||
} while (!Worklist.empty());
|
||||
|
||||
if (AddUserToIVUsers) {
|
||||
// Okay, we found a user that we cannot reduce.
|
||||
IVUses.push_back(new IVStrideUse(this, User, I));
|
||||
IVStrideUse &NewUse = IVUses.back();
|
||||
// Transform the expression into a normalized form.
|
||||
ISE = TransformForPostIncUse(NormalizeAutodetect,
|
||||
ISE, User, I,
|
||||
NewUse.PostIncLoops,
|
||||
*SE, *DT);
|
||||
DEBUG(dbgs() << " NORMALIZED TO: " << *ISE << '\n');
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
|
||||
IVUses.push_back(new IVStrideUse(this, User, Operand));
|
||||
IVStrideUse &NewUse = IVUses.back();
|
||||
|
||||
// Auto-detect and remember post-inc loops for this expression.
|
||||
const SCEV *S = SE->getSCEV(Operand);
|
||||
(void)TransformForPostIncUse(NormalizeAutodetect,
|
||||
S, User, Operand,
|
||||
NewUse.PostIncLoops,
|
||||
*SE, *DT);
|
||||
return NewUse;
|
||||
return IVUses.back();
|
||||
}
|
||||
|
||||
IVUsers::IVUsers()
|
||||
@ -176,7 +165,7 @@ bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
|
||||
// them by stride. Start by finding all of the PHI nodes in the header for
|
||||
// this loop. If they are induction variables, inspect their uses.
|
||||
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
||||
AddUsersIfInteresting(I);
|
||||
(void)AddUsersIfInteresting(I);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -113,7 +113,6 @@ class RegUseTracker {
|
||||
public:
|
||||
void CountRegister(const SCEV *Reg, size_t LUIdx);
|
||||
void DropRegister(const SCEV *Reg, size_t LUIdx);
|
||||
void DropUse(size_t LUIdx, size_t NewLUIdx);
|
||||
void DropUse(size_t LUIdx);
|
||||
|
||||
bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
|
||||
@ -152,24 +151,6 @@ RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
|
||||
RSD.UsedByIndices.reset(LUIdx);
|
||||
}
|
||||
|
||||
/// DropUse - Clear out reference by use LUIdx, and prepare for use NewLUIdx
|
||||
/// to be swapped into LUIdx's position.
|
||||
void
|
||||
RegUseTracker::DropUse(size_t LUIdx, size_t NewLUIdx) {
|
||||
// Remove the use index from every register's use list.
|
||||
for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
|
||||
I != E; ++I) {
|
||||
SmallBitVector &UsedByIndices = I->second.UsedByIndices;
|
||||
UsedByIndices.resize(std::max(UsedByIndices.size(), NewLUIdx + 1));
|
||||
if (LUIdx < UsedByIndices.size()) {
|
||||
UsedByIndices[LUIdx] = UsedByIndices[NewLUIdx];
|
||||
UsedByIndices.reset(NewLUIdx);
|
||||
} else
|
||||
UsedByIndices.reset(LUIdx);
|
||||
}
|
||||
}
|
||||
|
||||
/// DropUse - Clear out reference by use LUIdx.
|
||||
void
|
||||
RegUseTracker::DropUse(size_t LUIdx) {
|
||||
// Remove the use index from every register's use list.
|
||||
@ -1353,9 +1334,7 @@ class LSRInstance {
|
||||
UseMapDenseMapInfo> UseMapTy;
|
||||
UseMapTy UseMap;
|
||||
|
||||
bool reconcileNewOffset(LSRUse &LU,
|
||||
int64_t NewMinOffset, int64_t NewMaxOffset,
|
||||
bool HasBaseReg,
|
||||
bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
|
||||
LSRUse::KindType Kind, const Type *AccessTy);
|
||||
|
||||
std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
|
||||
@ -1364,8 +1343,7 @@ class LSRInstance {
|
||||
|
||||
void DeleteUse(LSRUse &LU);
|
||||
|
||||
LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU,
|
||||
int64_t &NewBaseOffs);
|
||||
LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
|
||||
|
||||
public:
|
||||
void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
|
||||
@ -1866,13 +1844,11 @@ LSRInstance::OptimizeLoopTermCond() {
|
||||
/// at the given offset and other details. If so, update the use and
|
||||
/// return true.
|
||||
bool
|
||||
LSRInstance::reconcileNewOffset(LSRUse &LU,
|
||||
int64_t NewMinOffset, int64_t NewMaxOffset,
|
||||
bool HasBaseReg,
|
||||
LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
|
||||
LSRUse::KindType Kind, const Type *AccessTy) {
|
||||
int64_t ResultMinOffset = LU.MinOffset;
|
||||
int64_t ResultMaxOffset = LU.MaxOffset;
|
||||
const Type *ResultAccessTy = AccessTy;
|
||||
int64_t NewMinOffset = LU.MinOffset;
|
||||
int64_t NewMaxOffset = LU.MaxOffset;
|
||||
const Type *NewAccessTy = AccessTy;
|
||||
|
||||
// Check for a mismatched kind. It's tempting to collapse mismatched kinds to
|
||||
// something conservative, however this can pessimize in the case that one of
|
||||
@ -1880,27 +1856,29 @@ LSRInstance::reconcileNewOffset(LSRUse &LU,
|
||||
if (LU.Kind != Kind)
|
||||
return false;
|
||||
// Conservatively assume HasBaseReg is true for now.
|
||||
if (NewMinOffset < LU.MinOffset) {
|
||||
if (!isAlwaysFoldable(LU.MaxOffset - NewMinOffset, 0, HasBaseReg,
|
||||
if (NewOffset < LU.MinOffset) {
|
||||
if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
|
||||
Kind, AccessTy, TLI))
|
||||
return false;
|
||||
ResultMinOffset = NewMinOffset;
|
||||
} else if (NewMaxOffset > LU.MaxOffset) {
|
||||
if (!isAlwaysFoldable(NewMaxOffset - LU.MinOffset, 0, HasBaseReg,
|
||||
NewMinOffset = NewOffset;
|
||||
} else if (NewOffset > LU.MaxOffset) {
|
||||
if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
|
||||
Kind, AccessTy, TLI))
|
||||
return false;
|
||||
ResultMaxOffset = NewMaxOffset;
|
||||
NewMaxOffset = NewOffset;
|
||||
}
|
||||
// Check for a mismatched access type, and fall back conservatively as needed.
|
||||
// TODO: Be less conservative when the type is similar and can use the same
|
||||
// addressing modes.
|
||||
if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
|
||||
ResultAccessTy = Type::getVoidTy(AccessTy->getContext());
|
||||
NewAccessTy = Type::getVoidTy(AccessTy->getContext());
|
||||
|
||||
// Update the use.
|
||||
LU.MinOffset = ResultMinOffset;
|
||||
LU.MaxOffset = ResultMaxOffset;
|
||||
LU.AccessTy = ResultAccessTy;
|
||||
LU.MinOffset = NewMinOffset;
|
||||
LU.MaxOffset = NewMaxOffset;
|
||||
LU.AccessTy = NewAccessTy;
|
||||
if (NewOffset != LU.Offsets.back())
|
||||
LU.Offsets.push_back(NewOffset);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1925,12 +1903,9 @@ LSRInstance::getUse(const SCEV *&Expr,
|
||||
// A use already existed with this base.
|
||||
size_t LUIdx = P.first->second;
|
||||
LSRUse &LU = Uses[LUIdx];
|
||||
if (reconcileNewOffset(LU, Offset, Offset,
|
||||
/*HasBaseReg=*/true, Kind, AccessTy)) {
|
||||
LU.Offsets.push_back(Offset);
|
||||
if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
|
||||
// Reuse this use.
|
||||
return std::make_pair(LUIdx, Offset);
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new use.
|
||||
@ -1939,7 +1914,11 @@ LSRInstance::getUse(const SCEV *&Expr,
|
||||
Uses.push_back(LSRUse(Kind, AccessTy));
|
||||
LSRUse &LU = Uses[LUIdx];
|
||||
|
||||
LU.Offsets.push_back(Offset);
|
||||
// We don't need to track redundant offsets, but we don't need to go out
|
||||
// of our way here to avoid them.
|
||||
if (LU.Offsets.empty() || Offset != LU.Offsets.back())
|
||||
LU.Offsets.push_back(Offset);
|
||||
|
||||
LU.MinOffset = Offset;
|
||||
LU.MaxOffset = Offset;
|
||||
return std::make_pair(LUIdx, Offset);
|
||||
@ -1947,12 +1926,8 @@ LSRInstance::getUse(const SCEV *&Expr,
|
||||
|
||||
/// DeleteUse - Delete the given use from the Uses list.
|
||||
void LSRInstance::DeleteUse(LSRUse &LU) {
|
||||
if (&LU != &Uses.back()) {
|
||||
if (&LU != &Uses.back())
|
||||
std::swap(LU, Uses.back());
|
||||
RegUses.DropUse(&LU - Uses.begin(), Uses.size() - 1);
|
||||
} else {
|
||||
RegUses.DropUse(&LU - Uses.begin());
|
||||
}
|
||||
Uses.pop_back();
|
||||
}
|
||||
|
||||
@ -1960,9 +1935,8 @@ void LSRInstance::DeleteUse(LSRUse &LU) {
|
||||
/// a formula that has the same registers as the given formula.
|
||||
LSRUse *
|
||||
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
|
||||
const LSRUse &OrigLU,
|
||||
int64_t &NewBaseOffs) {
|
||||
// Search all uses for a formula similar to OrigF. This could be more clever.
|
||||
const LSRUse &OrigLU) {
|
||||
// Search all uses for the formula. This could be more clever.
|
||||
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
|
||||
LSRUse &LU = Uses[LUIdx];
|
||||
// Check whether this use is close enough to OrigLU, to see whether it's
|
||||
@ -1985,15 +1959,8 @@ LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
|
||||
F.ScaledReg == OrigF.ScaledReg &&
|
||||
F.AM.BaseGV == OrigF.AM.BaseGV &&
|
||||
F.AM.Scale == OrigF.AM.Scale) {
|
||||
// Ok, all the registers and symbols matched. Check to see if the
|
||||
// immediate looks nicer than our old one.
|
||||
if (OrigF.AM.BaseOffs == INT64_MIN ||
|
||||
(F.AM.BaseOffs != INT64_MIN &&
|
||||
abs64(F.AM.BaseOffs) < abs64(OrigF.AM.BaseOffs))) {
|
||||
// Looks good. Take it.
|
||||
NewBaseOffs = F.AM.BaseOffs;
|
||||
if (F.AM.BaseOffs == 0)
|
||||
return &LU;
|
||||
}
|
||||
// This is the formula where all the registers and symbols matched;
|
||||
// there aren't going to be any others. Since we declined it, we
|
||||
// can skip the rest of the formulae and procede to the next LSRUse.
|
||||
@ -2634,17 +2601,6 @@ struct WorkItem {
|
||||
WorkItem(size_t LI, int64_t I, const SCEV *R)
|
||||
: LUIdx(LI), Imm(I), OrigReg(R) {}
|
||||
|
||||
bool operator==(const WorkItem &that) const {
|
||||
return LUIdx == that.LUIdx && Imm == that.Imm && OrigReg == that.OrigReg;
|
||||
}
|
||||
bool operator<(const WorkItem &that) const {
|
||||
if (LUIdx != that.LUIdx)
|
||||
return LUIdx < that.LUIdx;
|
||||
if (Imm != that.Imm)
|
||||
return Imm < that.Imm;
|
||||
return OrigReg < that.OrigReg;
|
||||
}
|
||||
|
||||
void print(raw_ostream &OS) const;
|
||||
void dump() const;
|
||||
};
|
||||
@ -2684,7 +2640,8 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
|
||||
// Now examine each set of registers with the same base value. Build up
|
||||
// a list of work to do and do the work in a separate step so that we're
|
||||
// not adding formulae and register counts while we're searching.
|
||||
SmallSetVector<WorkItem, 32> WorkItems;
|
||||
SmallVector<WorkItem, 32> WorkItems;
|
||||
SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
|
||||
for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
|
||||
E = Sequence.end(); I != E; ++I) {
|
||||
const SCEV *Reg = *I;
|
||||
@ -2727,10 +2684,10 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
|
||||
// Compute the difference between the two.
|
||||
int64_t Imm = (uint64_t)JImm - M->first;
|
||||
for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
|
||||
LUIdx = UsedByIndices.find_next(LUIdx)) {
|
||||
LUIdx = UsedByIndices.find_next(LUIdx))
|
||||
// Make a memo of this use, offset, and register tuple.
|
||||
WorkItems.insert(WorkItem(LUIdx, Imm, OrigReg));
|
||||
}
|
||||
if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
|
||||
WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2738,6 +2695,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
|
||||
Map.clear();
|
||||
Sequence.clear();
|
||||
UsedByIndicesMap.clear();
|
||||
UniqueItems.clear();
|
||||
|
||||
// Now iterate through the worklist and add new formulae.
|
||||
for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
|
||||
@ -3034,12 +2992,8 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
|
||||
E = LU.Formulae.end(); I != E; ++I) {
|
||||
const Formula &F = *I;
|
||||
if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
|
||||
int64_t NewBaseOffs;
|
||||
if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU,
|
||||
NewBaseOffs)) {
|
||||
if (reconcileNewOffset(*LUThatHas,
|
||||
F.AM.BaseOffs + LU.MinOffset - NewBaseOffs,
|
||||
F.AM.BaseOffs + LU.MaxOffset - NewBaseOffs,
|
||||
if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
|
||||
if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
|
||||
/*HasBaseReg=*/false,
|
||||
LU.Kind, LU.AccessTy)) {
|
||||
DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
|
||||
@ -3047,30 +3001,6 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
|
||||
|
||||
LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
|
||||
|
||||
// Update the relocs to reference the new use.
|
||||
// Do this first so that MinOffset and MaxOffset are updated
|
||||
// before we begin to determine which formulae to delete.
|
||||
for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
|
||||
E = Fixups.end(); I != E; ++I) {
|
||||
LSRFixup &Fixup = *I;
|
||||
if (Fixup.LUIdx == LUIdx) {
|
||||
Fixup.LUIdx = LUThatHas - &Uses.front();
|
||||
Fixup.Offset += F.AM.BaseOffs - NewBaseOffs;
|
||||
DEBUG(dbgs() << "New fixup has offset "
|
||||
<< Fixup.Offset << '\n');
|
||||
LUThatHas->Offsets.push_back(Fixup.Offset);
|
||||
if (Fixup.Offset > LUThatHas->MaxOffset)
|
||||
LUThatHas->MaxOffset = Fixup.Offset;
|
||||
if (Fixup.Offset < LUThatHas->MinOffset)
|
||||
LUThatHas->MinOffset = Fixup.Offset;
|
||||
}
|
||||
// DeleteUse will do a swap+pop_back, so if this fixup is
|
||||
// now pointing to the last LSRUse, update it to point to the
|
||||
// position it'll be swapped to.
|
||||
if (Fixup.LUIdx == NumUses-1)
|
||||
Fixup.LUIdx = LUIdx;
|
||||
}
|
||||
|
||||
// Delete formulae from the new use which are no longer legal.
|
||||
bool Any = false;
|
||||
for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
|
||||
@ -3089,6 +3019,20 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
|
||||
if (Any)
|
||||
LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
|
||||
|
||||
// Update the relocs to reference the new use.
|
||||
for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
|
||||
E = Fixups.end(); I != E; ++I) {
|
||||
LSRFixup &Fixup = *I;
|
||||
if (Fixup.LUIdx == LUIdx) {
|
||||
Fixup.LUIdx = LUThatHas - &Uses.front();
|
||||
Fixup.Offset += F.AM.BaseOffs;
|
||||
DEBUG(dbgs() << "New fixup has offset "
|
||||
<< Fixup.Offset << '\n');
|
||||
}
|
||||
if (Fixup.LUIdx == NumUses-1)
|
||||
Fixup.LUIdx = LUIdx;
|
||||
}
|
||||
|
||||
// Delete the old use.
|
||||
DeleteUse(LU);
|
||||
--LUIdx;
|
||||
|
@ -452,8 +452,8 @@ bb5: ; preds = %bb3, %entry
|
||||
; CHECK-NEXT: addss %xmm{{.*}}, %xmm{{.*}}
|
||||
; CHECK-NEXT: mulss (%r{{[^,]*}}), %xmm{{.*}}
|
||||
; CHECK-NEXT: movss %xmm{{.*}}, (%r{{[^,]*}})
|
||||
; CHECK-NEXT: decq %r{{.*}}
|
||||
; CHECK-NEXT: addq $4, %r{{.*}}
|
||||
; CHECK-NEXT: decq %r{{.*}}
|
||||
; CHECK-NEXT: addq $4, %r{{.*}}
|
||||
; CHECK-NEXT: movaps %xmm{{.*}}, %xmm{{.*}}
|
||||
; CHECK-NEXT: BB10_2:
|
||||
|
Loading…
x
Reference in New Issue
Block a user