CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
llvm-svn: 306529
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
This exposes a method in MachineFrameInfo that calculates
MaxCallFrameSize and calls it after instruction selection in the ARM
target.
This avoids
ARMBaseRegisterInfo::canRealignStack()/ARMFrameLowering::hasReservedCallFrame()
giving different answers in early/late phases of codegen.
The testcase shows a particular nasty example result of that where we
would fail to properly align an alloca.
Differential Revision: https://reviews.llvm.org/D32622
llvm-svn: 302303
On AMDGPU if an SGPR is spilled to a VGPR, the frame index
is deleted. If there were any CSR SGPRs, this woudl
assert when setting the offset.
llvm-svn: 301961
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.
Differential Revision: https://reviews.llvm.org/D31953
llvm-svn: 300196
Each Calling convention (CC) defines a static list of registers that should be preserved by a callee function. All other registers should be saved by the caller.
Some CCs use additional condition: If the register is used for passing/returning arguments – the caller needs to save it - even if it is part of the Callee Saved Registers (CSR) list.
The current LLVM implementation doesn’t support it. It will save a register if it is part of the static CSR list and will not care if the register is passed/returned by the callee.
The solution is to dynamically allocate the CSR lists (Only for these CCs). The lists will be updated with actual registers that should be saved by the callee.
Since we need the allocated lists to live as long as the function exists, the list should reside inside the Machine Register Info (MRI) which is a property of the Machine Function and managed by it (and has the same life span).
The lists should be saved in the MRI and populated upon LowerCall and LowerFormalArguments.
The patch will also assist to implement future no_caller_saved_regsiters attribute intended for interrupt handler CC.
Differential Revision: https://reviews.llvm.org/D28566
llvm-svn: 297715
Summary:
In this function, virtual registers can be introduced (for example
through calls to emitThumbRegPlusImmInReg). doScavengeFrameVirtualRegs
will replace those virtual registers with concrete registers later on
in PrologEpilogInserter, which sets NoVRegs again.
This patch fixes the Codegen/Thumb/segmented-stacks.ll test case which
failed with expensive checks.
https://llvm.org/bugs/show_bug.cgi?id=27484
Reviewers: rnk, bkramer, olista01
Reviewed By: olista01
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D28829
llvm-svn: 292372
The scavenger was not passed if requiresFrameIndexScavenging was
enabled. I need to be able to test for the availability of an
unallocatable register here, so I can't create a virtual register for
it.
It might be better to just always use the scavenger and stop
creating virtual registers.
llvm-svn: 287843
Summary: This makes a change to the state used to maintain visited information for depth first iterator. We know assume a method "completed(...)" which is called after all children of a node have been visited. In all existing cases, this method does nothing so this patch has no functional changes. It will however allow a client to distinguish back from cross edges in a DFS tree.
Reviewers: nadav, mehdi_amini, dberlin
Subscribers: MatzeB, mzolotukhin, twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D25191
llvm-svn: 283391
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The ppc64 multistage bot fails on this.
This reverts commit r279124.
Also Revert "CodeGen: Add/Factor out LiveRegUnits class; NFCI" because it depends on the previous change
This reverts commit r279171.
llvm-svn: 279199
Re-apply r276044 with off-by-1 instruction fix for the reload placement.
This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.
This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.
Differential Revision: http://reviews.llvm.org/D21885
llvm-svn: 279124
Reverting this commit for now as it seems to be causing failures on
test-suite tests on the clang-ppc64le-linux-lnt bot.
This reverts commit r276044.
llvm-svn: 276068
This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.
This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.
Differential Revision: http://reviews.llvm.org/D21885
llvm-svn: 276044
Use MachineInstr& over MachineInstr* to avoid implicit iterator to
pointer conversions. MachineInstr*-as-nullptr was being used as a flag
for whether the for loop terminated normally; I added an explicit `bool`
instead.
llvm-svn: 274310
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
- Use range based for
- Use the more common variable names MBB and MF for
MachineBasicBlock/MachineFunction variables.
- Add a few const modifiers
llvm-svn: 274187
Summary:
... into getFrameIndexReferencePreferSP. This change folds the
fail-then-retry logic into getFrameIndexReferencePreferSP.
There is a non-functional but behaviorial change in WinException --
earlier if `getFrameIndexReferenceFromSP` failed we'd trip an assert,
but now we'll silently use the (wrong) offset from the base pointer. I
could not write the assert I'd like to write ("FrameReg ==
StackRegister", like I've done in X86FrameLowering) since there is no
easy way to get to the stack register from WinException (happy to be
proven wrong here). One solution to this is to add a `bool
OnlyStackPointer` parameter to `getFrameIndexReferenceFromSP` that
asserts if it could not satisfy its promise of returning an offset from
a stack pointer, but that seems overkill.
Reviewers: rnk
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D21427
llvm-svn: 272938
Summary:
... when the offset is not statically known.
Prioritize addresses relative to the stack pointer in the stackmap, but
fallback gracefully to other modes of addressing if the offset to the
stack pointer is not a known constant.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer, rnk, sanjoy, thanm
Differential Revision: http://reviews.llvm.org/D21259
llvm-svn: 272756
Summary:
When stack-protection is activated and WinEH exceptions is used,
the EHRegNode (exception handling registration) is allocated twice on the stack.
This was not breaking anything except loosing space on the stack.
```
D:\src\llvm\examples>llc exc2.ll -debug-only=pei
alloc FI(0) at SP[-24]
alloc FI(1) at SP[-48] <<-- Allocated
alloc FI(1) at SP[-72] <<-- Allocated twice!?
alloc FI(2) at SP[-76]
alloc FI(4) at SP[-80]
alloc FI(3) at SP[-84]
```
Reviewers: rnk, majnemer
Subscribers: chrisha, llvm-commits
Differential Revision: http://reviews.llvm.org/D21188
llvm-svn: 272426
Summary:
If the target requests it, use emptry spaces in the fixed and
callee-save stack area to allocate local stack objects.
AArch64: Change last callee-save reg stack object alignment instead of
size to leave a gap to take advantage of above change.
Reviewers: t.p.northover, qcolombet, MatzeB
Subscribers: rengolin, mcrosier, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D20220
llvm-svn: 271527
Before r269750 we did the comparisons in this loop in signed ints so
that it DTRT when MinCSFrameIndex was 0. This was changed because it's
now possible for MinCSFrameIndex to be UINT_MAX, but that introduced a
bug when we were comparing `>= 0` - this is tautological in unsigned.
Rework the comparisons here to avoid issues with unsigned wrapping.
No test. I couldn't find a way to get any of the StackGrowsUp in-tree
targets to reach the code that sets MinCSFrameIndex.
llvm-svn: 270492
PrologEpilogInserter has these 3 phases, which are related, but not
all of them are needed by all targets. This patch reorganizes PEI's
varous functions around those phases for more clear separation. It also
introduces a new TargetMachine hook, usesPhysRegsForPEI, which is true
for non-virtual targets. When it is true, all the phases operate as
before, and PEI requires the AllVRegsAllocated property on
MachineFunctions. Otherwise, CSR spilling and scavenging are skipped and
only prolog/epilog insertion/frame finalization is done.
Differential Revision: http://reviews.llvm.org/D18366
llvm-svn: 269750
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
This state is no longer useful and not guaranteed to be valid in later
codegen passes. For example, see the added test, which would print a
savepoint of %bb.-1 without this change, and crashes with a
use-after-free error under ASan if you apply the recycling allocator
patch from llvm.org/PR26808.
llvm-svn: 266150
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
The CatchObjOffset is relative to the end of the EH registration node
for 32-bit x86 WinEH targets. A special sentinel value, 0, is used to
indicate that no catch object should be initialized.
This means that a catch object allocated immediately before the
registration node would be assigned a CatchObjOffset of 0, leading the
runtime to believe that a catch object should not be initialized.
To handle this, allocate the registration node prior to any other frame
object. This will ensure that catch objects will not be allocated
before the registration node.
This fixes PR26757.
Differential Revision: http://reviews.llvm.org/D17689
llvm-svn: 262294
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
llvm-svn: 252578
The __CxxFrameHandler3 tables for 32-bit are supposed to hold stack
offsets relative to EBP, not ESP. I blindly updated the win-catchpad.ll
test case, and immediately noticed that 32-bit catching stopped working.
While I'm at it, move the frame index to frame offset WinEH table logic
out of PEI. PEI shouldn't have to know about WinEHFuncInfo. I realized
we can calculate frame index offsets just fine from the table printer.
llvm-svn: 249618
There was an off-by-one bug in ip2state tables which manifested when one
call immediately preceded the try-range of the next. The return address
of the previous call would appear to be within the try range of the next
scope, resulting in extra destructors or catches running.
We also computed the wrong offset for catch parameter stack objects. The
offset should be from RSP, not from RBP.
llvm-svn: 249578
HHVM calling convention, hhvmcc, is used by HHVM JIT for
functions in translated cache. We currently support LLVM back end to
generate code for X86-64 and may support other architectures in the
future.
In HHVM calling convention any GP register could be used to pass and
return values, with the exception of R12 which is reserved for
thread-local area and is callee-saved. Other than R12, we always
pass RBX and RBP as args, which are our virtual machine's stack pointer
and frame pointer respectively.
When we enter translation cache via hhvmcc function, we expect
the stack to be aligned at 16 bytes, i.e. skewed by 8 bytes as opposed
to standard ABI alignment. This affects stack object alignment and stack
adjustments for function calls.
One extra calling convention, hhvm_ccc, is used to call C++ helpers from
HHVM's translation cache. It is almost identical to standard C calling
convention with an exception of first argument which is passed in RBP
(before we use RDI, RSI, etc.)
Differential Revision: http://reviews.llvm.org/D12681
llvm-svn: 248832
The algorithm would not modify the live-in list of blocks below the save
block point which is correct unless it happens to be a restore point at
the same time.
Also fixes the benign issue of live-in registers being added twice in
some cases.
The testcase is based on a test submitted by Kit Barton.
Differential Revision: http://reviews.llvm.org/D13176
llvm-svn: 248620
Clang now passes the adjectives as an argument to catchpad.
Getting the CatchObj working is simply a matter of threading another
static alloca through codegen, first as an alloca, then as a frame
index, and finally as a frame offset.
llvm-svn: 247844