When simplifying a load we need to make sure that the type of the
simplified value matches the type of the instruction we're processing.
In theory, we can handle casts here as we deal with constant data, but
since it's not implemented at the moment, we at least need to bail out.
This fixes PR28262.
llvm-svn: 273562
DeadStoreElimination can currently remove a small store rendered unnecessary by
a later larger one, but could not remove a larger store rendered unnecessary by
a series of later smaller ones. This adds that capability.
It works by keeping a map, which is used as an effective interval map, for each
store later overwritten only partially, and filling in that interval map as
more such stores are discovered. No additional walking or aliasing queries are
used. In the map forms an interval covering the the entire earlier store, then
it is dead and can be removed. The map is used as an interval map by storing a
mapping between the ending offset and the beginning offset of each interval.
I discovered this problem when investigating a performance issue with code like
this on PowerPC:
#include <complex>
using namespace std;
complex<float> bar(complex<float> C);
complex<float> foo(complex<float> C) {
return bar(C)*C;
}
which produces this:
define void @_Z4testSt7complexIfE(%"struct.std::complex"* noalias nocapture sret %agg.result, i64 %c.coerce) {
entry:
%ref.tmp = alloca i64, align 8
%tmpcast = bitcast i64* %ref.tmp to %"struct.std::complex"*
%c.sroa.0.0.extract.shift = lshr i64 %c.coerce, 32
%c.sroa.0.0.extract.trunc = trunc i64 %c.sroa.0.0.extract.shift to i32
%0 = bitcast i32 %c.sroa.0.0.extract.trunc to float
%c.sroa.2.0.extract.trunc = trunc i64 %c.coerce to i32
%1 = bitcast i32 %c.sroa.2.0.extract.trunc to float
call void @_Z3barSt7complexIfE(%"struct.std::complex"* nonnull sret %tmpcast, i64 %c.coerce)
%2 = bitcast %"struct.std::complex"* %agg.result to i64*
%3 = load i64, i64* %ref.tmp, align 8
store i64 %3, i64* %2, align 4 ; <--- ***** THIS SHOULD NOT BE HERE ****
%_M_value.realp.i.i = getelementptr inbounds %"struct.std::complex", %"struct.std::complex"* %agg.result, i64 0, i32 0, i32 0
%4 = lshr i64 %3, 32
%5 = trunc i64 %4 to i32
%6 = bitcast i32 %5 to float
%_M_value.imagp.i.i = getelementptr inbounds %"struct.std::complex", %"struct.std::complex"* %agg.result, i64 0, i32 0, i32 1
%7 = trunc i64 %3 to i32
%8 = bitcast i32 %7 to float
%mul_ad.i.i = fmul fast float %6, %1
%mul_bc.i.i = fmul fast float %8, %0
%mul_i.i.i = fadd fast float %mul_ad.i.i, %mul_bc.i.i
%mul_ac.i.i = fmul fast float %6, %0
%mul_bd.i.i = fmul fast float %8, %1
%mul_r.i.i = fsub fast float %mul_ac.i.i, %mul_bd.i.i
store float %mul_r.i.i, float* %_M_value.realp.i.i, align 4
store float %mul_i.i.i, float* %_M_value.imagp.i.i, align 4
ret void
}
the problem here is not just that the i64 store is unnecessary, but also that
it blocks further backend optimizations of the other uses of that i64 value in
the backend.
In the future, we might want to add a special case for handling smaller
accesses (e.g. using a bit vector) if the map mechanism turns out to be
noticeably inefficient. A sorted vector is also a possible replacement for the
map for small numbers of tracked intervals.
Differential Revision: http://reviews.llvm.org/D18586
llvm-svn: 273559
Summary:
The backend has no reason to behave like a driver and should generally do
as it's told (and error out if it can't) instead of trying to figure out
what the API user meant. The default ABI is still derived from the arch
component as a concession to backwards compatibility.
API-users that previously passed an explicit CPU and a triple that was
inconsistent with the CPU (e.g. mips-linux-gnu and mips64r2) may get a
different ABI to what they got before. However, it's expected that there
are no such users on the basis that CodeGen has been asserting that the
triple is consistent with the selected ABI for several releases. API-users
that were consistent or passed '' or 'generic' as the CPU will see no
difference.
Reviewers: sdardis, rafael
Subscribers: rafael, dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D21466
llvm-svn: 273557
Move most of the initializations in ARMSubtarget::initializeEnvironment to
member initializers.
Change suggested by Matthias Braun (see http://reviews.llvm.org/D21432).
llvm-svn: 273556
Summary:
When parseAnyRegister() encounters a symbol alias, it parses integers and adds
a corresponding expression to the operand list. This is clearly wrong since the
only operands that parseAnyRegister() should be accepting are registers.
It's not clear why this code was added and there are no test cases that cover
it. I think it might be leftover from when searchSymbolAlias() was more widely
used.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D21377
llvm-svn: 273555
This flag was introduced in r269655 with the new diagnostic handler for llc. Its
purpose was to keep the old behavior for some of the tests that didn't recover
well after an error. Those tests have been fixed, so now it's safe to remove the
flag entirely.
Fixes PR27759.
Differential Revision: http://reviews.llvm.org/D21368
llvm-svn: 273554
Currently isComplete = 1 requires that every instruction must
be described, declared unsupported or marked as having no
scheduling information for a processor.
For some backends such as MIPS, this requirement entails
long regex lists of instructions that are unsupported.
This patch teaches Tablegen to skip over instructions that
are associated with unsupported feature when checking if the
scheduling model is complete.
Patch by: Daniel Sanders
Contributions by: Simon Dardis
Reviewers: MatzeB
Differential Reviewer: http://reviews.llvm.org/D20522
llvm-svn: 273551
The exit-on-error flag was necessary in order to avoid an assertion when
handling DYNAMIC_STACKALLOC nodes in SelectionDAGLegalize.
We can avoid the assertion by creating some dummy nodes. This enables us to
remove the exit-on-error flag on the first 2 run lines (SI), but on the third
run line (R600) we would run into another assertion when trying to reserve
indirect registers. This patch also replaces that assertion with an early exit
from the function.
Fixes PR27761.
Differential Revision: http://reviews.llvm.org/D20852
llvm-svn: 273550
dext and dins, along with their 'm' and 'u' variants are defined in mips64r2,
not mips64.
Reviewers: dsanders, vkalintiris
Differential Review: http://reviews.llvm.org/D21608
llvm-svn: 273549
IfConversion used to always add the undef flag when adding a use operand
on a newly predicated instruction. This would be an operand for the register
being conditionally redefined. Due to the undef flag, the liveness of this
register prior to the predicated instruction would get lost.
This patch changes this so that such use operands are added only when the
register is live, without the undef flag.
Reviewed by Quentin Colombet.
http://reviews.llvm.org/D209077
llvm-svn: 273545
This is a cleanup commit similar to r271555, but for ARM.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
Since the ARM backend seems to have quite a lot of calls to these methods, I
intend to submit 5-6 subtarget features at a time, instead of one big lump.
Differential Revision: http://reviews.llvm.org/D21432
llvm-svn: 273544
Patch by Nitesh Jain.
Summary: On some target like MIPS32 we need to explicitly link atomic library for 64 bit atomic operations. This module then can be used in LLDB (http://reviews.llvm.org/D20464) or Libcxx (http://reviews.llvm.org/D16613) for explicitly link to atomic library.
Reviewers: chandlerc, beanz
Differential: reviews.llvm.org/D20896
llvm-svn: 273534
MCSymbol.h shouldn't pull in MCAssembler.h, just MCFragment.h.
MCLinkerOptimizationHint.h shouldn't need MCMachObjectWriter.h. The
rest is fixing the fallout.
llvm-svn: 273507
This is a follow-up to r273479. At the time I wrote r273479 I didn't connect the dots that the functions I was adding had to exist somewhere. Turns out, they do. This finishes moving the functions to MachO.h.
Existing MachO fat header tests like test/tools/llvm-readobj/Inputs/macho-universal-archive.x86_64.i386 execute this code.
llvm-svn: 273502
When trying to convert a loading instruction into a FAULTING_LOAD, we
sometimes face code like this:
if %R10 is not null:
%R9<def> = MOV32ri Immediate
%R9<def, tied> = AND32rm %R9, 0x20(%R10)
else:
goto TRAP
In these cases we would like to use the AND32rm instruction as the
faulting operation by hoisting the "depedency" def-ing %R9 also above
the control flow, transforming the program into:
%R9<def> = MOV32ri Immediate
%R9<def, tied> = FAULTING_LOAD_OP(AND32rm %R9, 0x20(%R10), FailPath: TRAP)
This change teaches ImplicitNullChecks to do the above, when safe.
llvm-svn: 273501
Summary: Do not require __STDC_LIMIT_MACROS and __STDC_CONSTANT_MACROS macros to be defined globally. They are not needed for C++11 compliant standard headers.
Reviewers: joerg, jyknight
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21553
llvm-svn: 273493
LLVMConfig.cmake needs to set LLVM_BINARY_DIR differently based on whether or not it is the build directory or the install directory. The build directory just needs to set the value from the configuration, the install directory needs to set it to the install prefix.
llvm-svn: 273479
Tweak the big-types.ll test case to catch this bug. We just need an
enumerator name that doesn't have a length that is a multiple of 4.
llvm-svn: 273477