when simplifying, allowing them to be eagerly turned into switches. This
is the last step required to get "Example 7" from this blog post:
http://blog.regehr.org/archives/320
On X86, we now generate this machine code, which (to my eye) seems better
than the ICC generated code:
_crud: ## @crud
## BB#0: ## %entry
cmpb $33, %dil
jb LBB0_4
## BB#1: ## %switch.early.test
addb $-34, %dil
cmpb $58, %dil
ja LBB0_3
## BB#2: ## %switch.early.test
movzbl %dil, %eax
movabsq $288230376537592865, %rcx ## imm = 0x400000017001421
btq %rax, %rcx
jb LBB0_4
LBB0_3: ## %lor.rhs
xorl %eax, %eax
ret
LBB0_4: ## %lor.end
movl $1, %eax
ret
llvm-svn: 121690
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
llvm-svn: 118840
it isn't unreachable and should not be zapped. The check for the entry block
was missing in one case: a block containing a unwind instruction. While there,
do some small cleanups: "M" is not a great name for a Function* (it would be
more appropriate for a Module*), change it to "Fn"; use Fn in more places.
llvm-svn: 117224
- Eliminate redundant successors.
- Convert an indirectbr with one successor into a direct branch.
Also, generalize SimplifyCFG to be able to be run on a function entry block.
It knows quite a few simplifications which are applicable to the entry
block, and it only needs a few checks to avoid trouble with the entry block.
llvm-svn: 111060
when it detects undefined behavior. llvm.trap generally codegens into some
thing really small (e.g. a 2 byte ud2 instruction on x86) and debugging this
sort of thing is "nontrivial". For example, we now compile:
void foo() { *(int*)0 = 42; }
into:
_foo:
pushl %ebp
movl %esp, %ebp
ud2
Some may even claim that this is a security hole, though that seems dubious
to me. This addresses rdar://7958343 - Optimizing away null dereference
potentially allows arbitrary code execution
llvm-svn: 103356
by merging all returns in a function into a single one, but simplifycfg
currently likes to duplicate the return (an unfortunate choice!)
llvm-svn: 91890
MergeBlockIntoPredecessor. This makes SimplifyCFG slightly more aggressive,
and makes it unnecessary for LoopUnroll to have its own copy of this code.
llvm-svn: 85667
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
unfoldable references to a PHI node in the block being folded, and disable
the transformation in that case. The correct transformation of such PHI
nodes depends on whether BB dominates Succ, and dominance is expensive
to compute here. (Alternatively, it's possible to check whether any
uses are live, but that's also essentially a dominance calculation.
Another alternative is to use reg2mem, but it probably isn't a good idea to
use that in simplifycfg.)
Also, remove some incorrect code from CanPropagatePredecessorsForPHIs
which is made unnecessary with this patch: it didn't consider the case
where a PHI node in BB has multiple uses.
llvm-svn: 79174
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
we assumed a CFG structure that would be valid when all code in
the function is reachable, but not all code is necessarily
reachable. Do a simple, but horrible, CFG walk to check for this
case.
llvm-svn: 62487
consistently for deleting branches. In addition to being slightly
more readable, this makes SimplifyCFG a bit better
about cleaning up after itself when it makes conditions unused.
llvm-svn: 61100
The SimplifyCFG pass looks at basic blocks that contain only phi nodes,
followed by an unconditional branch. In a lot of cases, such a block (BB) can
be merged into their successor (Succ).
This merging is performed by TryToSimplifyUncondBranchFromEmptyBlock. It does
this by taking all phi nodes in the succesor block Succ and expanding them to
include the predecessors of BB. Furthermore, any phi nodes in BB are moved to
Succ and expanded to include the predecessors of Succ as well.
Before attempting this merge, CanPropagatePredecessorsForPHIs checks to see if
all phi nodes can be properly merged. All functional changes are made to
this function, only comments were updated in
TryToSimplifyUncondBranchFromEmptyBlock.
In the original code, CanPropagatePredecessorsForPHIs looks quite convoluted
and more like stack of checks added to handle different kinds of situations
than a comprehensive check. In particular the first check in the function did
some value checking for the case that BB and Succ have a common predecessor,
while the last check in the function simply rejected all cases where BB and
Succ have a common predecessor. The first check was still useful in the case
that BB did not contain any phi nodes at all, though, so it was not completely
useless.
Now, CanPropagatePredecessorsForPHIs is restructured to to look a lot more
similar to the code that actually performs the merge. Both functions now look
at the same phi nodes in about the same order. Any conflicts (phi nodes with
different values for the same source) that could arise from merging or moving
phi nodes are detected. If no conflicts are found, the merge can happen.
Apart from only restructuring the checks, two main changes in functionality
happened.
Firstly, the old code rejected blocks with common predecessors in most cases.
The new code performs some extra checks so common predecessors can be handled
in a lot of cases. Wherever common predecessors still pose problems, the
blocks are left untouched.
Secondly, the old code rejected the merge when values (phi nodes) from BB were
used in any other place than Succ. However, it does not seem that there is any
situation that would require this check. Even more, this can be proven.
Consider that BB is a block containing of a single phi node "%a" and a branch
to Succ. Now, since the definition of %a will dominate all of its uses, BB
will dominate all blocks that use %a. Furthermore, since the branch from BB to
Succ is unconditional, Succ will also dominate all uses of %a.
Now, assume that one predecessor of Succ is not dominated by BB (and thus not
dominated by Succ). Since at least one use of %a (but in reality all of them)
is reachable from Succ, you could end up at a use of %a without passing
through it's definition in BB (by coming from X through Succ). This is a
contradiction, meaning that our original assumption is wrong. Thus, all
predecessors of Succ must also be dominated by BB (and thus also by Succ).
This means that moving the phi node %a from BB to Succ does not pose any
problems when the two blocks are merged, and any use checks are not needed.
llvm-svn: 51478
before trying to merge the block into its predecessors.
This allows two-entry-phi-return.ll to be simplified
into a single basic block.
llvm-svn: 48252
Secondly, we have to check whether the branch is actually pointing to the block
with the unwind in it. We could have gotten here because of the unwind_to alone.
llvm-svn: 48099
the function type, instead they belong to functions
and function calls. This is an updated and slightly
corrected version of Reid Spencer's original patch.
The only known problem is that auto-upgrading of
bitcode files doesn't seem to work properly (see
test/Bitcode/AutoUpgradeIntrinsics.ll). Hopefully
a bitcode guru (who might that be? :) ) will fix it.
llvm-svn: 44359