improvements to the EvaluateInDifferentType code. This code works
by just inserted a bunch of new code and then seeing if it is
useful. Instcombine is not allowed to do this: it can only insert
new code if it is useful, and only when it is converging to a more
canonical fixed point. Now that we iterate when DCE makes progress,
this causes an infinite loop when the code ends up not being used.
llvm-svn: 63483
simplifydemandedbits to simplify instructions with *multiple
uses* in contexts where it can get away with it. This allows
it to simplify the code in multi-use-or.ll into a single 'add
double'.
This change is particularly interesting because it will cover
up for some common codegen bugs with large integers created due
to the recent SROA patch. When working on fixing those bugs,
this should be disabled.
llvm-svn: 63481
Now, if it detects that "V" is the same as some other value,
SimplifyDemandedBits returns the new value instead of RAUW'ing it immediately.
This has two benefits:
1) simpler code in the recursive SimplifyDemandedBits routine.
2) it allows future fun stuff in instcombine where an operation has multiple
uses and can be simplified in one context, but not all.
#2 isn't implemented yet, this patch should have no functionality change.
llvm-svn: 63479
be able to handle *ANY* alloca that is poked by loads and stores of
bitcasts and GEPs with constant offsets. Before the code had a number
of annoying limitations and caused it to miss cases such as storing into
holes in structs and complex casts (as in bitfield-sroa) where we had
unions of bitfields etc. This also handles a number of important cases
that are exposed due to the ABI lowering stuff we do to pass stuff by
value.
One case that is pretty great is that we compile
2006-11-07-InvalidArrayPromote.ll into:
define i32 @func(<4 x float> %v0, <4 x float> %v1) nounwind {
%tmp10 = call <4 x i32> @llvm.x86.sse2.cvttps2dq(<4 x float> %v1)
%tmp105 = bitcast <4 x i32> %tmp10 to i128
%tmp1056 = zext i128 %tmp105 to i256
%tmp.upgrd.43 = lshr i256 %tmp1056, 96
%tmp.upgrd.44 = trunc i256 %tmp.upgrd.43 to i32
ret i32 %tmp.upgrd.44
}
which turns into:
_func:
subl $28, %esp
cvttps2dq %xmm1, %xmm0
movaps %xmm0, (%esp)
movl 12(%esp), %eax
addl $28, %esp
ret
Which is pretty good code all things considering :).
One effect of this is that SROA will start generating arbitrary bitwidth
integers that are a multiple of 8 bits. In the case above, we got a
256 bit integer, but the codegen guys assure me that it can handle the
simple and/or/shift/zext stuff that we're doing on these operations.
This addresses rdar://6532315
llvm-svn: 63469
There is now a direct way from value-use-iterator to incoming block in PHINode's API.
This way we avoid the iterator->index->iterator trip, and especially the costly
getOperandNo() invocation. Additionally there is now an assertion that the iterator
really refers to one of the PHI's Uses.
llvm-svn: 62869
we assumed a CFG structure that would be valid when all code in
the function is reachable, but not all code is necessarily
reachable. Do a simple, but horrible, CFG walk to check for this
case.
llvm-svn: 62487
because of dead code, a phi could use the speculated instruction
that was not in "BB2". Make this check explicit and tighten up
some other corners. This fixes PR3292. No testcase becauase this
depends entirely on visitation order of blocks and requires a
sequence of 8 passes to repro.
llvm-svn: 62476
doing very similar pointer capture analysis.
Factor out the common logic. The new version
is from FunctionAttrs since it does a better
job than the version in BasicAliasAnalysis
llvm-svn: 62461
putc, puts, perror, vscanf and vsscanf from getting annotations.
Add annotations for eight printf functions, memalign, pread and pwrite.
On Linux, llvm-gcc sometimes renames strdup, getc, putc, strtok_r, scanf and
sscanf. Match the alternate function names.
Fix a crash annotating opendir.
Don't mark fsetpos's second parameter as nocapture. It's supposed to be
captured.
Do mark fopen's path and mode strings as nocapture. Mark ferror as readonly,
but not fileno which may set errno.
llvm-svn: 62456
- Looking at the number of sign bits of the a sext instruction to determine whether new trunc + sext pair should be added when its source is being evaluated in a different type.
llvm-svn: 62263
my earlier patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
Also, when we build an expression that involves a (possibly
non-affine) IV from a different loop as well as an IV from
the one we're interested in (containsAddRecFromDifferentLoop),
don't recurse into that. We can't do much with it and will
get in trouble if we try to create new non-affine IVs or something.
More testcases are coming.
llvm-svn: 62212