Reverse iterators to doubly-linked lists can be simpler (and cheaper)
than std::reverse_iterator. Make it so.
In particular, change ilist<T>::reverse_iterator so that it is *never*
invalidated unless the node it references is deleted. This matches the
guarantees of ilist<T>::iterator.
(Note: MachineBasicBlock::iterator is *not* an ilist iterator, but a
MachineInstrBundleIterator<MachineInstr>. This commit does not change
MachineBasicBlock::reverse_iterator, but it does update
MachineBasicBlock::reverse_instr_iterator. See note at end of commit
message for details on bundle iterators.)
Given the list (with the Sentinel showing twice for simplicity):
[Sentinel] <-> A <-> B <-> [Sentinel]
the following is now true:
1. begin() represents A.
2. begin() holds the pointer for A.
3. end() represents [Sentinel].
4. end() holds the poitner for [Sentinel].
5. rbegin() represents B.
6. rbegin() holds the pointer for B.
7. rend() represents [Sentinel].
8. rend() holds the pointer for [Sentinel].
The changes are #6 and #8. Here are some properties from the old
scheme (which used std::reverse_iterator):
- rbegin() held the pointer for [Sentinel] and rend() held the pointer
for A;
- operator*() cost two dereferences instead of one;
- converting from a valid iterator to its valid reverse_iterator
involved a confusing increment; and
- "RI++->erase()" left RI invalid. The unintuitive replacement was
"RI->erase(), RE = end()".
With vector-like data structures these properties are hard to avoid
(since past-the-beginning is not a valid pointer), and don't impose a
real cost (since there's still only one dereference, and all iterators
are invalidated on erase). But with lists, this was a poor design.
Specifically, the following code (which obviously works with normal
iterators) now works with ilist::reverse_iterator as well:
for (auto RI = L.rbegin(), RE = L.rend(); RI != RE;)
fooThatMightRemoveArgFromList(*RI++);
Converting between iterator and reverse_iterator for the same node uses
the getReverse() function.
reverse_iterator iterator::getReverse();
iterator reverse_iterator::getReverse();
Why doesn't iterator <=> reverse_iterator conversion use constructors?
In order to catch and update old code, reverse_iterator does not even
have an explicit conversion from iterator. It wouldn't be safe because
there would be no reasonable way to catch all the bugs from the changed
semantic (see the changes at call sites that are part of this patch).
Old code used this API:
std::reverse_iterator::reverse_iterator(iterator);
iterator std::reverse_iterator::base();
Here's how to update from old code to new (that incorporates the
semantic change), assuming I is an ilist<>::iterator and RI is an
ilist<>::reverse_iterator:
[Old] ==> [New]
reverse_iterator(I) (--I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(++I) I.getReverse()
RI.base() (--RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
(++RI).base() RI.getReverse()
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
=======================================
Note: bundle iterators are out of scope
=======================================
MachineBasicBlock::iterator, also known as
MachineInstrBundleIterator<MachineInstr>, is a wrapper to represent
MachineInstr bundles. The idea is that each operator++ takes you to the
beginning of the next bundle. Implementing a sane reverse iterator for
this is harder than ilist. Here are the options:
- Use std::reverse_iterator<MBB::i>. Store a handle to the beginning of
the next bundle. A call to operator*() runs a loop (usually
operator--() will be called 1 time, for unbundled instructions).
Increment/decrement just works. This is the status quo.
- Store a handle to the final node in the bundle. A call to operator*()
still runs a loop, but it iterates one time fewer (usually
operator--() will be called 0 times, for unbundled instructions).
Increment/decrement just works.
- Make the ilist_sentinel<MachineInstr> *always* store that it's the
sentinel (instead of just in asserts mode). Then the bundle iterator
can sniff the sentinel bit in operator++().
I initially tried implementing the end() option as part of this commit,
but updating iterator/reverse_iterator conversion call sites was
error-prone. I have a WIP series of patches that implements the final
option.
llvm-svn: 280032
This is used to communicate that the instruction selection pipeline
failed at some point.
Another way to achieve that would be to have some kind of conditional
scheduling in the PassManager, such that we only schedule a pass based
on the success/failure of another one. The property approach has the
advantage of being lightweight and solve the problem at stake.
llvm-svn: 279885
This method allows to reset the state of a MachineFunction as if it was
just created. This will be used during the bring-up of GlobalISel to
provide a way to fallback on SelectionDAG. That way, we can start doing
correctness testing even if we are not able to select all functions via
the global instruction selector.
llvm-svn: 279876
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
I want to compute the SSA property of .mir files automatically in
upcoming patches. The problem with this is that some inputs will be
reported as static single assignment with some passes claiming not to
support SSA form. In reality though those passes do not support PHI
instructions => Track the presence of PHI instructions separate from the
SSA property.
Differential Revision: https://reviews.llvm.org/D22719
llvm-svn: 279573
Remove all the dead code around ilist_*sentinel_traits. This is a
follow-up to gutting them as part of r279314 (originally r278974),
staged to prevent broken builds in sub-projects.
Uses were removed from clang in r279457 and lld in r279458.
llvm-svn: 279473
- Always compile print() regardless of LLVM_ENABLE_DUMP. (We usually
only gard dump() functions with that).
- Only show the set properties to reduce output clutter.
- Remove the unused variant that even shows the unset properties.
- Fix comments
llvm-svn: 279338
Currently nodes_iterator may dereference to a NodeType* or a NodeType&. Make them all dereference to NodeType*, which is NodeRef later.
Differential Revision: https://reviews.llvm.org/D23704
Differential Revision: https://reviews.llvm.org/D23705
llvm-svn: 279326
Share code for the (mostly problematic) embedded sentinel traits.
- Move the LLVM_NO_SANITIZE("object-size") attribute to
ilist_half_embedded_sentinel_traits and ilist_embedded_sentinel_traits
(previously it spread throughout the code duplication).
- Add an ilist_full_embedded_sentinel_traits which has no UB (but has
the downside of storing the complete node).
- Replace all the custom sentinel traits in LLVM with a declaration of
ilist_sentinel_traits that inherits from one of the embedded sentinel
traits classes.
There are still custom sentinel traits in other LLVM subprojects. I'll
remove those in a follow-up.
Nothing at all should be changing here, this is just rearranging code.
Note that the final goal here is to remove the sentinel traits
altogether, settling on the memory layout of
ilist_half_embedded_sentinel_traits without the UB. This intermediate
step moves the logic into ilist.h.
llvm-svn: 278513
Selected: the InstructionSelect pass ran and all pre-isel generic
instructions have been eliminated; i.e., all instructions are now
target-specific or non-pre-isel generic instructions (e.g., COPY).
Since only pre-isel generic instructions can have generic virtual register
operands, this also means that all generic virtual registers have been
constrained to virtual registers (assigned to register classes) and that
all sizes attached to them have been eliminated.
This lets us enforce certain invariants across passes.
This property is GlobalISel-specific, but is always available.
llvm-svn: 277482
RegBankSelected: the RegBankSelect pass ran and all generic virtual
registers have been assigned to a register bank.
This lets us enforce certain invariants across passes.
This property is GlobalISel-specific, but is always available.
llvm-svn: 277475
Legalized: The MachineLegalizer ran; all pre-isel generic instructions
have been legalized, i.e., all instructions are now one of:
- generic and always legal (e.g., COPY)
- target-specific
- legal pre-isel generic instructions.
This lets us enforce certain invariants across passes.
This property is GlobalISel-specific, but is always available.
llvm-svn: 277470
Summary:
Previously we took an unsigned.
Hooray for type-safety.
Reviewers: chandlerc
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D22282
llvm-svn: 275591
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
When printing the properties required by a pass, only print the
properties that are set, and not those that are clear (only properties
that are set are verified, clear properties are "don't-care").
llvm-svn: 267070
Use the MachineFunctionProperty mechanism to indicate whether the
liveness info is accurate instead of a bool flag on MRI.
Keeps the MRI accessor function for convenience. NFC
Differential Revision: http://reviews.llvm.org/D18767
llvm-svn: 266020
Use the MachineFunctionProperty mechanism to indicate whether a MachineFunction
is in SSA form instead of a custom method on MachineRegisterInfo. NFC
Differential Revision: http://reviews.llvm.org/D18574
llvm-svn: 265318
This makes check failures much easier to understand.
Make it empty (but leave it in the class) for NDEBUG builds.
Differential Revision: http://reviews.llvm.org/D18529
llvm-svn: 264780
MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
We have known UB in some ilists where we static cast half nodes to
(larger) derived types and use the address. See llvm.org/PR26753.
This needs to be fixed, but in the meantime it'd be nice if running
ubsan didn't complain. This adds annotations in the two places where
ubsan complains while running check-all of a sanitized clang build.
llvm-svn: 262683
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
llvm-svn: 253378
Re-implement `ilist_node::getNextNode()` and `getPrevNode()` without
relying on the sentinel having a "next" pointer. Instead, get access to
the owning list and compare against the `begin()` and `end()` iterators.
This only works when the node *can* get access to the owning list. The
new support is in `ilist_node_with_parent<>`, and any class `Ty`
inheriting from `ilist_node<NodeTy>` that wants `getNextNode()` and/or
`getPrevNode()` should inherit from
`ilist_node_with_parent<NodeTy, ParentTy>` instead. The requirements:
- `NodeTy` must have a `getParent()` function that returns the parent.
- `ParentTy` must have a `getSublistAccess()` static that, given a(n
ignored) `NodeTy*` (to determine which list), returns a member field
pointer to the appropriate `ilist<>`.
This isn't the cleanest way to get access to the owning list, but it
leverages the API already used in the IR hierarchy (see, e.g.,
`Instruction::getSublistAccess()`).
If anyone feels like ripping out the calls to `getNextNode()` and
`getPrevNode()` and replacing with direct iterator logic, they can also
remove the access function, etc., but as an incremental step, I'm
maintaining the API where it's currently used in tree.
If these requirements are *not* met, call sites with access to the ilist
can call `iplist<NodeTy>::getNextNode(NodeTy*)` directly, as in
ilistTest.cpp.
Why rewrite this?
The old code was broken, calling `getNext()` on a sentinel that possibly
didn't have a "next" pointer at all! The new code avoids that
particular flavour of UB (see the commit message for r252538 for more
details about the "lucky" memory layout that made this function so
interesting).
There's still some UB here: the end iterator gets downcast to `NodeTy*`,
even when it's a sentinel (which is typically
`ilist_half_node<NodeTy*>`). I'll tackle that in follow-up commits.
See this llvm-dev thread for more details:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/091115.html
What's the danger?
There might be some code that relies on `getNextNode()` or
`getPrevNode()` *never* returning `nullptr` -- i.e., that relies on them
being broken when the sentinel is an `ilist_half_node<NodeTy>`. I tried
to root out those cases with the audits I did leading up to r252380, but
it's possible I missed one or two. I hope not.
(If (1) you have out-of-tree code, (2) you've reverted r252380
temporarily, and (3) you get some weird crashes with this commit, then I
recommend un-reverting r252380 and auditing the compile errors looking
for "strange" implicit conversions.)
llvm-svn: 252694
Remove implicit ilist iterator conversions from MachineBasicBlock.cpp.
I've also added an overload of `splice()` that takes a pointer, since
it's a natural API. This is similar to the overloads I added for
`remove()` and `erase()` in r249867.
llvm-svn: 249883
Remove a few more implicit ilist iterator conversions, this time from
Analysis.cpp and BranchFolding.cpp.
I added a few overloads for `remove()` and `erase()`, which quite
naturally take pointers as well as iterators as parameters. This will
reduce the churn at least in the short term, but I don't really have a
problem with these existing for longer.
llvm-svn: 249867
We shifted the MachineBasicBlocks to the end of the MachineFunction in
DFS order. This will not ensure that MachineBasicBlocks which fell
through to one another will remain contiguous. Instead, implement
a stable sort algorithm for iplist.
This partially reverts commit r214150.
llvm-svn: 247978
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Summary:
This change is part of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10984
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241610
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
The goal is to allows MachineFunctionInfo to override this create
function to customize the creation.
No change intended in existing backend in this patch.
llvm-svn: 225292
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838