When the destination register of a XOP instruction is an XMM register, bits
[255:128] of the corresponding YMM register are cleared.
When the destination register of a EVEX encoded instruction is an XMM/YMM
register, the upper bits of the corresponding ZMM are cleared.
On processors that feature AVX512, a write to an XMM registers always clears the
upper portion of the corresponding ZMM register if the instruction is VEX or
EVEX encoded.
These new tests show some interesting cases which aren't correctly analyzed by
llvm-mca. The lack of knowledge related to the implicit update on the
super-registers is addressed by D48225.
llvm-svn: 334945
Allow a tied operand of a different operand class in InstAliases,
so that the operand can be printed (and added to the MC instruction)
as the appropriate register. For example, 'GPR64as32', which would
be printed/parsed as a 32bit register and should match a tied 64bit
register operand, where the former is a sub-register of the latter.
This patch also generalizes the constraint checking to an overrideable
method in MCTargetAsmParser, so that target asmparsers can specify
whether a given operand satisfies the tied register constraint.
Reviewers: olista01, rengolin, fhahn, SjoerdMeijer, samparker, dsanders, craig.topper
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47714
llvm-svn: 334942
This patch adds instructions for comparing elements from two vectors, e.g.
cmpgt p0.s, p0/z, z0.s, z1.s
and also adds support for comparing to a 64-bit wide element vector, e.g.
cmpgt p0.s, p0/z, z0.s, z1.d
The patch also contains aliases for certain comparisons, e.g.:
cmple p0.s, p0/z, z0.s, z1.s => cmpge p0.s, p0/z, z1.s, z0.s
cmplo p0.s, p0/z, z0.s, z1.s => cmphi p0.s, p0/z, z1.s, z0.s
cmpls p0.s, p0/z, z0.s, z1.s => cmphs p0.s, p0/z, z1.s, z0.s
cmplt p0.s, p0/z, z0.s, z1.s => cmpgt p0.s, p0/z, z1.s, z0.s
llvm-svn: 334931
Previously we heap allocated the X86InstrFMA3Group objects which were created by passing them small register/memory opcode arrays that existed as individual static tables.
Rather than a bunch of small static arrays we now have one large static table of X86InstrFMA3Group objects. Rather than storing a pointer to the opcode arrays in the X86InstrFMA3Group object, we now store have a register and memory array as part of the object. If a group doesn't have memory or register opcodes, the array entries will be 0.
This greatly simplifies the destruction of the X86InstrFMA3Info object. We no longer need to delete the X86InstrFMA3Group objects as we destruct the DenseMap. And we don't need to keep track of which ones we already deleted.
This reduces the llc binary size on my local machine by ~50k. I can only assume that's really due to the fact that we had something like 512 small static arrays that we passed to the init functions either one at a time or in pairs. So there were between 256 and 512 distinct calls to the init functions in the initOnceImpl method.
llvm-svn: 334925
We already have these aliases for EVEX enocded instructions, but not for the GPR, MMX, SSE, and VEX versions.
Also remove the vpextrw.s EVEX alias. That's not something gas implements.
llvm-svn: 334922
The .s assembly strings allow the reversed forms to be targeted from assembly which matches gas behavior. But when printing the instructions we should print them without the .s to match other tooling like objdump. By using InstAliases we can use the normal string in the instruction and just hide it from the assembly parser.
Ideally we'd add the .s versions to the legacy SSE and VEX versions as well for full compatibility with gas. Not sure how we got to state where only EVEX was supported.
llvm-svn: 334920
Unlike CodeGenInstruction, CodeGenInstAlias was flatting asm strings in its constructor. For instructions it was the users responsibility to flatten the string.
AsmMatcherEmitter didn't know this and treated them the same. This caused double flattening of InstAliases. This is mostly harmless unless the desired assembly string contains curly braces. The second flattening wouldn't know to ignore these and would remove the curly braces. And for variant 1 it would remove the contents of them as well.
To mitigate this, this patch makes removes the flattening from the CodeGenIntAlias constructor and modifies AsmWriterEmitter to account for the flattening not having been done.
llvm-svn: 334919
These increases the size of the static tables, but is closer to what we would get if used the autogenerated table directly. This reduces the remaining large deltas between what's in the manual table and what's in the autogenerated table.
llvm-svn: 334915
symbols in debug mode.
The MaterializationResponsibility class hijacks the Materializing flag to track
symbols that have not yet been resolved in order to guard against redundant
resolution. Since this is an API contract check and only enforced in debug mode
there is no reason to maintain the flag state in release mode.
llvm-svn: 334909
Some of the calls to hasSingleUseFromRoot were passing the load itself. If the load's chain result has a user this would count against that. By getting the true parent of the match and ensuring any intermediate between the match and the load have a single use we can avoid this case. isLegalToFold will take care of checking users of the load's data output.
This fixed at least fma-scalar-memfold.ll to succed without the peephole pass.
llvm-svn: 334908
There are a lot of instructions to add under these ISAs (and the other AVX512 variants) but this should demonstrate how to test for the EVEX instructions with different maskings
llvm-svn: 334907
Support for SVE's predicated select instructions to select elements
from either vector, both in a data-vector and a predicate-vector
variant.
llvm-svn: 334905
We don't want to prevent inlining because of target-cpu and -features
attributes that were added to newer versions of LLVM/Clang: There are
no incompatible functions in PTX, ptxas will throw errors in such cases.
Differential Revision: https://reviews.llvm.org/D47691
llvm-svn: 334904
These all have a short form encoding that the assembler already prefers. Though that preference seems to only be based on order in the .td fie. Hiding the long form saves space in the table and prevents us from breaking the implicit order based priority.
llvm-svn: 334897
VMOVPQIto64Zmr is not a 64-bit mode only instruction. But I don't know how to test this because VMOVPQIto64mr should always have priority over it in 32-bit mode since its only advantage is XMM16-XMM31 which aren't usable in 32-bit mode.
VMOVPQIto64Zrr is a 64-bit mode only instruction, but we don't need to explicitly mark it as such because it uses a GR64 register which won't parse in 32-bit mode.
llvm-svn: 334896
Summary:
We only modify CFG in a couple of places, and we can preserve DT there
with a little effort.
Reviewers: davide, vsk
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48059
llvm-svn: 334895
DominatorTreeBase::getNode does not modify its parameter and this change
allows callers that only have access to const pointers to use it without
casting.
Reviewers: kuhar, dblaikie, chandlerc
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D48231
llvm-svn: 334892
This patch adds a simple const_iterator implementation for SmallSet by
delegating to either a SmallVector::const_iterator or
std::set::const_iterator, depending on which storage is used by the
SmallSet.
Reviewers: dblaikie, craig.topper
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47942
llvm-svn: 334887
This is the common case in the BE when we serialize condition and then
rematerialize it. Use either original or inverted condition.
Differential Revision: https://reviews.llvm.org/D48246
llvm-svn: 334882
Relanding after fixing expensive check from modifying tables.
To avoid redundant work, during DAG legalization we keep tables
mapping pre-legalized SDValues to post-legalized SDValues and a
SDValue-to-SDValue map to enable fast node replacements. However, as
the keys are nodes which may be reused it is possible that an entry in
a table refers to a now deleted node N (that should have been renamed
by the value replacement map) while a new node N' exists. If N' is
then replaced that entry would be wrong. Previously we avoided this by
when potentially violating this property, walking every table and
updating all node pointers. This is very expensive but hopefully rare
occurance.
This patch assigns each instance of a SDValue used in legalization a
unique id and uses these ids in the legalization tables. This avoids
any such aliasing issue, avoiding the full table search and allowing
more aggressive incremental table pruning.
In some cases this is a 1000x speedup to compilation.
Reviewers: jyknight, echristo, bogner, tra
Reviewed By: bogner
Subscribers: dberris, grandinj, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47959
llvm-svn: 334880
Summary: This patch originated from D47388 and is a proper subset of the originating changes, containing only the fmf optimization guard extensions.
Reviewers: spatel, hfinkel, wristow, arsenm, javed.absar, rampitec, nhaehnle, nemanjai
Reviewed By: rampitec, nhaehnle
Subscribers: tpr, nemanjai, wdng
Differential Revision: https://reviews.llvm.org/D47918
llvm-svn: 334876
Summary:
Sending for presubmit review out of an abundance of caution; it would be
bad to mess this up.
Reviewers: sanjoy
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48238
llvm-svn: 334875
Summary:
Obviates the need for mask/clear/setFlags helpers.
There are some expressions here which can be simplified, but to keep
this easy to review, I have not simplified them in this patch.
No functional change.
Reviewers: sanjoy
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48237
llvm-svn: 334874
So far, we've only handled special cases of PatFrag like ImmLeaf. This patch
adds support for the remaining cases using similar mechanisms.
Like most C++ code from SelectionDAG, GISel and DAGISel expect to operate on
different types and representations and as such the code is not compatible
between the two. It's therefore necessary to add an alternative implementation
in the GISelPredicateCode field.
The target test for this feature could easily be done with IntImmLeaf and this
would save on a little boilerplate. The reason I've chosen to implement this
using PatFrag.GISelPredicateCode and not IntImmLeaf is because I was unable to
find a rule that was blocked solely by lack of support for PatFrag predicates. I
found that the ones I investigated as being likely candidates for the test
were further blocked by other things.
llvm-svn: 334871
Not sure any of these matter today because I don't think we ever produce them with IMPLICIT_DEF as an input. But by listing them we don't be suprised in the future.
llvm-svn: 334867
Modify ExpandStrictFPOp(...) to handle nodes that have scalar
operands.
Also, add a Strict FMA test and do some other light cleanup in the
Strict FP code.
Differential Revision: https://reviews.llvm.org/D48149
llvm-svn: 334863
Summary: This patch originated from D46562 and is a proper subset, with some issues addressed.
Reviewers: spatel, hfinkel, wristow, arsenm
Reviewed By: spatel
Subscribers: wdng, nhaehnle
Differential Revision: https://reviews.llvm.org/D47954
llvm-svn: 334862
Summary:
Using associated metadata rather than llvm.used allows linkers to
perform dead stripping with -fsanitize-coverage=pc-table. Unfortunately
in my local tests, LLD was the only linker that made use of this metadata.
Partially addresses https://bugs.llvm.org/show_bug.cgi?id=34636 and fixes
https://github.com/google/sanitizers/issues/971.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: Dor1s, hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D48203
llvm-svn: 334858