-enable-smarter-addr-folding to llc) that gives CGP a better
cost model for when to sink computations into addressing modes.
The basic observation is that sinking increases register
pressure when part of the addr computation has to be available
for other reasons, such as having a use that is a non-memory
operation. In cases where it works, it can substantially reduce
register pressure.
This code is currently an overall win on 403.gcc and 255.vortex
(the two things I've been looking at), but there are several
things I want to do before enabling it by default:
1. This isn't doing any caching of results, so it is much slower
than it could be. It currently slows down release-asserts llc
by 1.7% on 176.gcc: 27.12s -> 27.60s.
2. This doesn't think about inline asm memory operands yet.
3. The cost model botches the case when the needed value is live
across the computation for other reasons.
I'll continue poking at this, and eventually turn it on as llcbeta.
llvm-svn: 60074
optimize addressing modes. This allows us to optimize things like isel-sink2.ll
into:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 7(%eax), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
leal 4(%eax), %eax
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 3(%eax), %eax
ret
This shrinks (e.g.) 403.gcc from 1133510 to 1128345 lines of .s.
Note that the 2008-10-16-SpillerBug.ll testcase is dubious at best, I doubt
it is really testing what it thinks it is.
llvm-svn: 60068
can recursively match things) and scales by 0 by ignoring them.
This triggers once in 403.gcc, saving 1 (!!!!) instruction in the
whole huge app.
llvm-svn: 60013
into a new AddressingModeMatcher class. This makes it easier
to reason about and reduces passing around of stuff, but has
no functionality change.
llvm-svn: 60012
g++ -m32 -c -g -DIN_GCC -W -Wall -Wwrite-strings -Wmissing-format-attribute -fno-common -mdynamic-no-pic -DHAVE_CONFIG_H -Wno-unused -DTARGET_NAME=\"i386-apple-darwin9.5.0\" -I. -I. -I../../llvm-gcc.src/gcc -I../../llvm-gcc.src/gcc/. -I../../llvm-gcc.src/gcc/../include -I./../intl -I../../llvm-gcc.src/gcc/../libcpp/include -I../../llvm-gcc.src/gcc/../libdecnumber -I../libdecnumber -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.obj/include -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/include -DENABLE_LLVM -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.obj/../llvm.src/include -D_DEBUG -D_GNU_SOURCE -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS -I. -I. -I../../llvm-gcc.src/gcc -I../../llvm-gcc.src/gcc/. -I../../llvm-gcc.src/gcc/../include -I./../intl -I../../llvm-gcc.src/gcc/../libcpp/include -I../../llvm-gcc.src/gcc/../libdecnumber -I../libdecnumber -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.obj/include -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/include ../../llvm-gcc.src/gcc/llvm-types.cpp -o llvm-types.o
../../llvm-gcc.src/gcc/llvm-convert.cpp: In member function 'void TreeToLLVM::EmitMemCpy(llvm::Value*, llvm::Value*, llvm::Value*, unsigned int)':
../../llvm-gcc.src/gcc/llvm-convert.cpp:1496: error: 'memcpy_i32' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp:1496: error: 'memcpy_i64' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp: In member function 'void TreeToLLVM::EmitMemMove(llvm::Value*, llvm::Value*, llvm::Value*, unsigned int)':
../../llvm-gcc.src/gcc/llvm-convert.cpp:1512: error: 'memmove_i32' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp:1512: error: 'memmove_i64' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp: In member function 'void TreeToLLVM::EmitMemSet(llvm::Value*, llvm::Value*, llvm::Value*, unsigned int)':
../../llvm-gcc.src/gcc/llvm-convert.cpp:1528: error: 'memset_i32' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp:1528: error: 'memset_i64' is not a member of 'llvm::Intrinsic'
make[3]: *** [llvm-convert.o] Error 1
make[3]: *** Waiting for unfinished jobs....
rm fsf-funding.pod gcov.pod gfdl.pod cpp.pod gpl.pod gcc.pod
make[2]: *** [all-stage1-gcc] Error 2
make[1]: *** [stage1-bubble] Error 2
make: *** [all] Error 2
llvm-svn: 59809
The previous patches didn't match correctly. Also, we need to make sure that
the conditional is the same before doing the transformation.
llvm-svn: 58978
original code was matching like this:
if (match(A, m_Not(m_Value(B))))
B was already matched as a 'select' instruction. However, this isn't matching
what we think it's matching. It would match B as a 'Value', so basically
anything would match to it. In this case, a Constant matched. B was replaced
with a constant representation. And then the wrong value would be used in the
SelectInst::Create statement, causing a crash.
After thinking on this for a moment, and after Nick L. told me how the pattern
matching stuff was supposed to work, the solution was to match NOT an m_Value,
but an m_Select.
llvm-svn: 58946
to generate signed ICMP instructions to replace the FCMP. This would violate
the following:
define i1 @test1(i32 %val) {
%1 = uitofp i32 %val to double
%2 = fcmp ole double %1, 0.000000e+00
ret i1 %2
}
would be transformed into:
define i1 @test1(i32 %val) {
%1 = icmp slt i33 %val, 1
ret i1 %1
}
which is obviously wrong. This patch modifes InstCombiner::FoldFCmp_IntToFP_Cst
to handle when the LHS comes from UIToFP.
llvm-svn: 58929
This allows SCEV users to effectively calculate trip count.
LSR later on transforms back integer IVs to floating point IVs
later on to avoid int-to-float casts inside the loop.
llvm-svn: 58625
* merge two weak functions by making them both alias a third non-weak fn
* don't reimplement CallSite::hasArgument
* whitelist the safe linkage types
llvm-svn: 58568
This triggers only 60 times in llvm-test (look at .llvm.bc, not .linked.rbc)
and so it probably wont be turned on by default. Also, may of those are likely
to go away when PR2973 is fixed.
llvm-svn: 58557
function.
- This explicitly models the costs for functions which should
"always" or "never" be inlined. This fixes bugs where such costs
were not previously respected.
llvm-svn: 58450
LargeBlockInfo, we can now dramatically simplify their implementation
and speed them up at the same time. Now the code has time proportional
to the number of uses of the alloca, not the size of the block.
This also eliminates code that tried to batch up different allocas which
are used in the same blocks, and eliminates the 'retry list' logic which
was baroque and no unneccesary. In addition to being a speedup for crazy
cases, this is also a nice cleanup:
PromoteMemoryToRegister.cpp | 270 +++++++++++++++-----------------------------
1 file changed, 96 insertions(+), 174 deletions(-)
llvm-svn: 58229
a trivial dense map. Use this in RewriteSingleStoreAlloca to
avoid aggressively rescanning blocks over and over again. This
fixes PR2925, speeding up mem2reg on the testcase in that bug
from 4.56s to 0.02s in a debug build on my machine.
llvm-svn: 58227
LoopPass*.
- Although less precise, this means they can be used in clients
without RTTI (who would otherwise need to include LoopPass.h, which
eventually includes things using dynamic_cast). This was the
simplest solution that presented itself, but I am happy to use a
better one if available.
llvm-svn: 58010
to find opportunities for store-to-load forwarding or load CSE,
in the same way that visitStore scans back to do DSE. Also, define
a new helper function for testing whether the addresses of two
memory accesses are known to have the same value, and use it in
both visitStore and visitLoad.
These two changes allow instcombine to eliminate loads in code
produced by front-ends that frequently emit obviously redundant
addressing for memory references.
llvm-svn: 57608
This includes not marking a GEP involving a vector as unsafe, but only when it
has all zero indices. This allows scalarrepl to work in a few more cases.
llvm-svn: 57177
shifting and masking inside a bswap expr. This allows it to handle
the cases from PR2842, which involve the intermediate 'or'
expressions being shifted, not just the input value.
llvm-svn: 57095
when deciding whether to mark a function readnone/readonly.
Since the pass is currently run before SROA, this may be
quite helpful. Requested by Chris on IRC.
llvm-svn: 57050
pointer bitcasts and GEP's", and centralize the
logic in Value::getUnderlyingObject. The
difference with stripPointerCasts is that
stripPointerCasts only strips GEPs if all
indices are zero, while getUnderlyingObject
strips GEPs no matter what the indices are.
llvm-svn: 56922
- return attributes - inreg, zext and sext
- parameter attributes
- function attributes - nounwind, readonly, readnone, noreturn
Return attributes use 0 as the index.
Function attributes use ~0U as the index.
This patch requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56704
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56622
Unfortunately this means removing one regression test
of GlobalsModRef because I couldn't work out how to
perform it without MarkModRef.
llvm-svn: 56342
can get the readnone/readonly attributes, and gives them it.
The plan is to remove markmodref (which did the same thing
by querying GlobalsModRef) and delete the analogous
functionality from GlobalsModRef.
llvm-svn: 56341
- Recognize expressions like "x > -1 ? x : 0" as min/max and turn them
into expressions like "x < 0 ? 0 : x", which is easily recognizable
as a min/max operation.
- Refrain from folding expression like "y/2 < 1" to "y < 2" when the
comparison is being used as part of a min or max idiom, like
"y/2 < 1 ? 1 : y/2". In that case, the division has another use, so
folding doesn't eliminate it, and obfuscates the min/max, making it
harder to recognize as a min/max operation.
These benefit ScalarEvolution, CodeGen, and anything else that wants to
recognize integer min and max.
llvm-svn: 56246
cases. See the comment above OptimizeSMax for the full story, and
the testcase for an example. This cancels out a pessimization
commonly attributed to indvars, and will allow us to lift some of
the artificial throttles in indvars, rather than add new ones.
llvm-svn: 56230
users, and teach it about shufflevector instructions.
Also, fix a subtle bug in SimplifyDemandedVectorElts'
insertelement code.
This is a patch that was originally written by Eli Friedman,
with some fixes and cleanup by me.
llvm-svn: 55995
call (thus changing the call site) it didn't
inform the callgraph about this. But the
call site does matter - as shown by the testcase,
the callgraph become invalid after the inliner
ran (with an edge between two functions simply
missing), resulting in wrong deductions by
GlobalsModRef.
llvm-svn: 55872
because it does not maintain a correct list
of callsites. I discovered (see following
commit) that the inliner will create a wrong
callgraph if it is fed a callgraph with
correct edges but incorrect callsites. These
were created by Prune-EH, and while it wasn't
done via removeCallEdgeTo, it could have been
done via removeCallEdgeTo, which is an accident
waiting to happen. Use removeCallEdgeFor
instead.
llvm-svn: 55859
attributes on functions, based on the result of
alias analysis. It's not hardwired to use
GlobalsModRef even though this is the only (AFAIK)
alias analysis that results in this pass actually
doing something. Enable as follows:
opt ... -globalsmodref-aa -markmodref ...
Advantages of this pass: (1) records the result
of globalsmodref in the bitcode, meaning it is
available for use by later passes (currently
the pass manager isn't smart enough to magically
make an advanced alias analysis available to all
later passes), which may expose more optimization
opportunities; (2) hopefully speeds up compilation
when code is optimized twice, for example when a
file is compiled to bitcode, then later LTO is done
on it: marking functions readonly/readnone when
producing the initial bitcode should speed up alias
analysis during LTO; (3) good for discovering that
globalsmodref doesn't work very well :)
Not currently turned on by default.
llvm-svn: 55604
use raw_ostream instead of std::ostream. Among other goodness,
this speeds up llvm-dis of kc++ with a release build from 0.85s
to 0.49s (88% faster).
Other interesting changes:
1) This makes Value::print be non-virtual.
2) AP[S]Int and ConstantRange can no longer print to ostream directly,
use raw_ostream instead.
3) This fixes a bug in raw_os_ostream where it didn't flush itself
when destroyed.
4) This adds a new SDNode::print method, instead of only allowing "dump".
A lot of APIs have both std::ostream and raw_ostream versions, it would
be useful to go through and systematically anihilate the std::ostream
versions.
This passes dejagnu, but there may be minor fallout, plz let me know if
so and I'll fix it.
llvm-svn: 55263
In particular, Collector was confusing to implementors. Several
thought that this compile-time class was the place to implement
their runtime GC heap. Of course, it doesn't even exist at runtime.
Specifically, the renames are:
Collector -> GCStrategy
CollectorMetadata -> GCFunctionInfo
CollectorModuleMetadata -> GCModuleInfo
CollectorRegistry -> GCRegistry
Function::getCollector -> getGC (setGC, hasGC, clearGC)
Several accessors and nested types have also been renamed to be
consistent. These changes should be obvious.
llvm-svn: 54899
returning an std::string by value, it fills in a SmallString/SmallVector
passed in. This significantly reduces string thrashing in some cases.
More specifically, this:
- Adds an operator<< and a print method for APInt that allows you to
directly send them to an ostream.
- Reimplements APInt::toString to be much simpler and more efficient
algorithmically in addition to not thrashing strings quite as much.
This speeds up llvm-dis on kc++ by 7%, and may also slightly speed up the
asmprinter. This also fixes a bug I introduced into the asmwriter in a
previous patch w.r.t. alias printing.
llvm-svn: 54873
invalidating the iterator by deleting the current use. This fixes a segfault on
64 bit linux reported in PR2675.
Also remove an unneeded if.
llvm-svn: 54778