obscuring what would otherwise be a low-bits mask. Use ComputeMaskedBits
to compute what ShrinkDemandedConstant knew about to reconstruct a
low-bits mask value.
llvm-svn: 73540
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
llvm-svn: 73431
they contain multiplications of constants with add operations.
This helps simplify several kinds of things; in particular it
helps simplify expressions like ((-1 * (%a + %b)) + %a) to %b,
as expressions like this often come up in loop trip count
computations.
llvm-svn: 73361
even though the order doesn't matter at the top level of an expression,
it does matter when the constant is a subexpression of an n-ary
expression, because n-ary expressions are sorted lexicographically.
llvm-svn: 73358
that of the LHS. It doesn't matter for correctness, but the LHS
is more likely than the RHS to be a pointer type in exotic cases,
and it's more tidy to have it return the integer type.
llvm-svn: 72424
in the case where a loop exit value cannot be computed, instead of only in
some cases while using SCEVCouldNotCompute in others. This simplifies
getSCEVAtScope's callers.
llvm-svn: 72375
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
llvm-svn: 72093
getNoopOrSignExtend, and getTruncateOrNoop. These are similar
to getTruncateOrZeroExtend etc., except that they assert that
the conversion is either not widening or narrowing, as
appropriate. These will be used in some upcoming fixes.
llvm-svn: 71632
These values aren't analyzable, so they don't care if more information
about the loop trip count can be had. Also, SCEVUnknown is used for
a PHI while the PHI itself is being analyzed, so it needs to be left
in the Scalars map. This fixes a variety of subtle issues.
llvm-svn: 71533
return the correct value when the cast operand is all zeros. This ought
to be pretty rare, because it would mean that the regular SCEV folding
routines missed a case, though there are cases they might legitimately
miss. Also, it's unlikely anything currently using GetMinTrailingZeros
cares about this case.
llvm-svn: 71532
which are not analyzed with SCEV techniques, which can require
brute-forcing through a large number of instructions. This
fixes a massive compile-time issue on 400.perlbench (in
particular, the loop in MD5Transform).
llvm-svn: 71259
to sorting SCEVs by their kind, sort SCEVs of the same kind according
to their operands. This helps avoid things like (a+b) being a distinct
expression from (b+a).
llvm-svn: 71160
CallbackVH, with fixes. allUsesReplacedWith need to
walk the def-use chains and invalidate all users of a
value that is replaced. SCEVs of users need to be
recalcualted even if the new value is equivalent. Also,
make forgetLoopPHIs walk def-use chains, since any
SCEV that depends on a PHI should be recalculated when
more information about that PHI becomes available.
llvm-svn: 70927
makes ScalarEvolution::deleteValueFromRecords, and it's code that
subtly needed to be called before ReplaceAllUsesWith, unnecessary.
It also makes ValueDeletionListener unnecessary.
llvm-svn: 70645