On x86: (shl V, 1) -> add V,V
Hardware support for vector-shift is sparse and in many cases we scalarize the
result. Additionally, on sandybridge padd is faster than shl.
llvm-svn: 143311
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
http://lab.llvm.org:8011/builders/llvm-x86_64-linux/builds/101
--- Reverse-merging r141854 into '.':
U test/MC/Disassembler/X86/x86-32.txt
U test/MC/Disassembler/X86/simple-tests.txt
D test/CodeGen/X86/bmi.ll
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86.td
U lib/Target/X86/X86Subtarget.h
llvm-svn: 141857
- x87: no min or max.
- SSE1: min/max for single precision scalars and vectors.
- SSE2: min/max for single and double precision scalars and vectors.
- AVX: as SSE2, but also supports the wider ymm vectors. (this is covered by the isTypeLegal check)
llvm-svn: 140296
dag-combine optimization to implement the ext-load efficiently (using shuffles).
For example the type <4 x i8> is stored in memory as i32, but it needs to
find its way into a <4 x i32> register. Previously we scalarized the memory
access, now we use shuffles.
llvm-svn: 139995
maxps and maxpd). This broke the sse41-blend.ll testcase by causing
maxpd to be produced rather than a cmp+blend pair, which is the reason
I tweaked it. Gives a small speedup on doduc with dragonegg when the
GCC vectorizer is used.
llvm-svn: 139986
take into consideration the presence of AVX. This change, together with
the SSEDomainFix enabled for AVX, makes AVX codegen to always (hopefully)
emit the same code as SSE for 128-bit vector ops. I don't
have a testcase for this, but AVX now beats SSE in performance for
128-bit ops in the majority of programas in the llvm testsuite
llvm-svn: 139817
However with this fix it does now.
Basically the operand order for the x86 target specific node
is not the same as the instruction, but since the intrinsic need that
specific order at the instruction definition, just change the order
during legalization. Also, there were some wrong invertions of condition
codes, such as GE => LE, GT => LT, fix that too. Fix PR10907.
llvm-svn: 139528
assert("not implemented for target shuffle node");
to:
assert(0 && "not implemented for target shuffle node");
This causes a test failure in CodeGen/X86/palignr.ll which has
been marked as XFAIL for the time being.
Test failure filed at PR10901.
llvm-svn: 139454