The assembler can alias one instruction into another based
on the operands. For example the jump instruction "J" takes
and immediate operand, but if the operand is a register the
assembler will change it into a jump register "JR" instruction.
These changes are in the instruction td file.
Test cases included
Contributer: Vladimir Medic
llvm-svn: 163368
Actually these are just stubs for parsing the directives.
Semantic support will come later.
Test cases included
Contributer: Vladimir Medic
llvm-svn: 163364
- This patch is inspired by the failure of the following code snippet
which is used to convert enumerable values into encoding bits to
improve the readability of td files.
class S<int s> {
bits<2> V = !if(!eq(s, 8), {0, 0},
!if(!eq(s, 16), {0, 1},
!if(!eq(s, 32), {1, 0},
!if(!eq(s, 64), {1, 1}, {?, ?}))));
}
Later, PR8330 is found to report not exactly the same bug relevant
issue to bit/bits values.
- Instead of resolving bit/bits values separately through
resolveBitReference(), this patch adds getBit() for all Inits and
resolves bit value by resolving plus getting the specified bit. This
unifies the resolving of bit with other values and removes redundant
logic for resolving bit only. In addition,
BitsInit::resolveReferences() is optimized to take advantage of this
origanization by resolving VarBitInit's variable reference first and
then getting bits from it.
- The type interference in '!if' operator is revised to support possible
combinations of int and bits/bit in MHS and RHS.
- As there may be illegal assignments from integer value to bit, says
assign 2 to a bit, but we only check this during instantiation in some
cases, e.g.
bit V = !if(!eq(x, 17), 0, 2);
Verbose diagnostic message is generated when invalid value is
resolveed to help locating the error.
- PR8330 is fixed as well.
llvm-svn: 163360
The RegisterCoalescer understands overlapping live ranges where one
register is defined as a copy of the other. With this change, register
allocators using LiveRegMatrix can do the same, at least for copies
between physical and virtual registers.
When a physreg is defined by a copy from a virtreg, allow those live
ranges to overlap:
%CL<def> = COPY %vreg11:sub_8bit; GR32_ABCD:%vreg11
%vreg13<def,tied1> = SAR32rCL %vreg13<tied0>, %CL<imp-use,kill>
We can assign %vreg11 to %ECX, overlapping the live range of %CL.
llvm-svn: 163336
We will soon allow virtual register live ranges to overlap regunit live
ranges when the physreg is defined as a copy of the virtreg:
%EAX = COPY %vreg5
FOO %vreg5
BAR %EAX<kill>
There is no real interference since %vreg5 and %EAX have the same value
where they overlap.
This patch prevents addKillFlags from adding virtreg kill flags to FOO
where the assigned physreg is overlapping the virtual register live
range.
llvm-svn: 163335
Kill flags are difficult to maintain, and liveness queries are better
handled by live intervals.
Kill flags are reinserted after register allocation by addKillFlags().
llvm-svn: 163334
Enhances basic alias analysis to recognize phis whose first incoming values are
NoAlias and whose other incoming values are just the phi node itself through
some amount of recursion.
Example: With this change basicaa reports that ptr_phi and ptr_phi2 do not alias
each other.
bb:
ptr = ptr2 + 1
loop:
ptr_phi = phi [bb, ptr], [loop, ptr_plus_one]
ptr2_phi = phi [bb, ptr2], [loop, ptr2_plus_one]
...
ptr_plus_one = gep ptr_phi, 1
ptr2_plus_one = gep ptr2_phi, 1
This enables the elimination of one load in code like the following:
extern int foo;
int test_noalias(int *ptr, int num, int* coeff) {
int *ptr2 = ptr;
int result = (*ptr++) * (*coeff--);
while (num--) {
*ptr2++ = *ptr;
result += (*coeff--) * (*ptr++);
}
*ptr = foo;
return result;
}
Part 2/2 of fix for PR13564.
llvm-svn: 163319
If we can show that the base pointers of two GEPs don't alias each other using
precise analysis and the indices and base offset are equal then the two GEPs
also don't alias each other.
This is primarily needed for the follow up patch that analyses NoAlias'ing PHI
nodes.
Part 1/2 of fix for PR13564.
llvm-svn: 163317
The lookup tables did not get built in a deterministic order.
This makes them get built in the order that the corresponding phi nodes
were found.
llvm-svn: 163305
If we have a BUILD_VECTOR that is mostly a constant splat, it is often better to splat that constant then insertelement the non-constant lanes instead of insertelementing every lane from an undef base.
llvm-svn: 163304
This adds a transformation to SimplifyCFG that attemps to turn switch
instructions into loads from lookup tables. It works on switches that
are only used to initialize one or more phi nodes in a common successor
basic block, for example:
int f(int x) {
switch (x) {
case 0: return 5;
case 1: return 4;
case 2: return -2;
case 5: return 7;
case 6: return 9;
default: return 42;
}
This speeds up the code by removing the hard-to-predict jump, and
reduces code size by removing the code for the jump targets.
llvm-svn: 163302
assembler such as shifts greater than 32. In the case
of direct object, the code gen needs to do this lowering
since the assembler is not involved.
With the advent of the llvm-mc assembler, it also needs
to do the same lowering.
This patch makes that specific lowering code accessible
to both the direct object output and the assembler.
This patch does not affect generated output.
llvm-svn: 163287
Now that it is possible to dynamically tie MachineInstr operands,
predicated instructions are possible in SSA form:
%vreg3<def> = SUBri %vreg1, -2147483647, pred:14, pred:%noreg, %opt:%noreg
%vreg4<def,tied1> = MOVCCr %vreg3<tied0>, %vreg1, %pred:12, pred:%CPSR
Becomes a predicated SUBri with a tied imp-use:
SUBri %vreg1, -2147483647, pred:13, pred:%CPSR, opt:%noreg, %vreg1<imp-use,tied0>
This means that any instruction that is safe to move can be folded into
a MOVCC, and the *CC pseudo-instructions are no longer needed.
The test case changes reflect that Thumb2SizeReduce recognizes the
predicated instructions. It didn't understand the pseudos.
llvm-svn: 163274
switch, make sure we include the value for the cases when calculating edge
value from switch to the default destination.
rdar://12241132
llvm-svn: 163270