where the other_half of the movt and movw relocation entries needs to get set
and only with the 16 bits of the other half.
rdar://10038370
llvm-svn: 160978
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
rdar://10554090 and rdar://11873276
llvm-svn: 160919
It is possible that an instruction can use and update EFLAGS.
When checking the safety, we should check the usage of EFLAGS first before
declaring it is safe to optimize due to the update.
llvm-svn: 160912
This can happen as long as the instruction is not reachable. Instcombine does generate these unreachable malformed selects when doing RAUW
llvm-svn: 160874
These idempotent sub-register indices don't do anything --- They simply
map XMM registers to themselves. They no longer affect register classes
either since the SubRegClasses field has been removed from Target.td.
This patch replaces XMM->XMM EXTRACT_SUBREG and INSERT_SUBREG patterns
with COPY_TO_REGCLASS patterns which simply become COPY instructions.
The number of IMPLICIT_DEF instructions before register allocation is
reduced, and that is the cause of the test case changes.
llvm-svn: 160816
It is redundant; RegisterCoalescer will do the remat if it can't eliminate
the copy. Collected instruction counts before and after this. A few extra
instructions are generated due to spilling but it is normal to see these kinds
of changes with almost any small codegen change, according to Jakob.
This also fixed rdar://11830760 where xor is expected instead of movi0.
llvm-svn: 160749
of an array element (rather than at the beginning of the element) and extended
into the next element, then the load from the second element was being handled
wrong due to incorrect updating of the notion of which byte to load next. This
fixes PR13442. Thanks to Chris Smowton for reporting the problem, analyzing it
and providing a fix.
llvm-svn: 160711
The long branch pass (fixed in r160601) no longer uses the global base register
to compute addresses of branch destinations, so it is not necessary to reserve
a slot on the stack.
llvm-svn: 160703
struct s {
double x1;
float x2;
};
__attribute__((regparm(3))) struct s f(int a, int b, int c);
void g(void) {
f(41, 42, 43);
}
We need to be able to represent passing the address of s to f (sret) in a
register (inreg). Turns out that all that is needed is to not mark them as
mutually incompatible.
llvm-svn: 160695
are targeting an ELF platform. Only fold gs-relative (and fs-relative) loads
if it is actually sensible to do so for the target platform.
This fixes PR13438.
llvm-svn: 160687
might be deliberate "one time" leaks, so that leak checkers can find them.
This is a reapply of r160602 with the fix that this time I'm committing the
code I thought I was committing last time; the I->eraseFromParent() goes
*after* the break out of the loop.
llvm-svn: 160664
r160529 that was subsequently reverted. The fix was to not call
GV->eraseFromParent() right before the caller does the same. The existing
testcases already caught this bug if run under valgrind.
llvm-svn: 160602
This pass no longer requires that the global pointer value be saved to the
stack or register since it uses bal instruction to compute branch distance.
llvm-svn: 160601
LiveRangeEdit::foldAsLoad() can eliminate a register by folding a load
into its only use. Only do that when the load is safe to move, and it
won't extend any live ranges.
This fixes PR13414.
llvm-svn: 160575
PHIElimination splits critical edges when it predicts it can resolve
interference and eliminate copies. It doesn't split the edge if the
interference wouldn't be resolved anyway because the phi-use register is
live in the critical edge anyway.
Teach PHIElimination to split loop exiting edges with interference, even
if it wouldn't resolve the interference. This removes the necessary
copies from the loop, which is still an improvement from injecting the
copies into the loop.
The test case demonstrates the improvement. Before:
LBB0_1:
cmpb $0, (%rdx)
leaq 1(%rdx), %rdx
movl %esi, %eax
je LBB0_1
After:
LBB0_1:
cmpb $0, (%rdx)
leaq 1(%rdx), %rdx
je LBB0_1
movl %esi, %eax
llvm-svn: 160571
GetBestDestForJumpOnUndef() assumes there is at least 1 successor, which isn't
true if the block ends in an indirect branch with no successors. Fix this by
bailing out earlier in this case.
llvm-svn: 160546