Some register classes are only used for instruction operand constraints.
They should never be used for virtual registers. Previously, those
register classes were given an empty allocation order, but now you can
say 'let isAllocatable=0' in the register class definition.
TableGen calculates if a register is part of any allocatable register
class, and makes that information available in TargetRegisterDesc::inAllocatableClass.
The goal here is to eliminate use cases for overriding allocation_order_*
methods.
llvm-svn: 132508
I was confused whether new uint8_t[] would zero-initialize the returned
array, and it seems that so is gcc-4.0.
This should fix the test failures on darwin 9.
llvm-svn: 132500
Instead, use simpler approach and let DBG_VALUE follow its predecessor instruction. After live debug value analysis pass, all DBG_VALUE instruction are placed at the right place. Thanks Jakob for the hint!
llvm-svn: 132483
Parsing a register name/number for .cfi directives can't assume that a
register name starts with a '%' token. Be more flexible and check for a
register number instead. Still unlikely to be perfect, but it allows us
to parse both plain identifiers as register names and integers as register
numbers, which is what we're wanting to support at this point.
llvm-svn: 132466
register classes.
It provides information for each register class that cannot be
determined statically, like:
- The number of allocatable registers in a class after filtering out the
reserved and invalid registers.
- The preferred allocation order with registers that overlap callee-saved
registers last.
- The last callee-saved register that overlaps a given physical register.
This information usually doesn't change between functions, so it is
reused for compiling multiple functions when possible. The many
possible combinations of reserved and callee saves registers makes it
unfeasible to compute this information statically in TableGen.
Use RegisterClassInfo to count available registers in various heuristics
in SimpleRegisterCoalescing, making the pass run 4% faster.
llvm-svn: 132450
In the given testcase, the "Clobber" was pointing to a load, and GVN was incorrectly assuming that meant that the "Clobber" load overlapped the load being analyzed (when they are actually unrelated).
The included testcase tests both this commit and r132434.
Part two of rdar://9429882. (r132434 was mislabeled.)
llvm-svn: 132442
floating-point comparison, generate a mask of 0s or 1s, and generally
DTRT with NaNs. Only profitable when the user wants a materialized 0
or 1 at runtime. rdar://problem/5993888
llvm-svn: 132404
Add TargetRegisterInfo::hasSubClassEq and use it to check for compatible
register classes instead of trying to list all register classes in
X86's getLoadStoreRegOpcode.
llvm-svn: 132398