SUBREG_TO_REG takes a subregister index as 3rd operand, print the name
instead of a number. We already do the same for INSERT_SUBREG and
REG_SEQUENCE.
llvm-svn: 291481
Most (maybe all?) tar commands can handle tar archives with blank
version fields, but POSIX requires "00" to be set to the field, so
doing it is good for compliance.
llvm-svn: 291479
This patch adds support for the DWARF debug_lines section. The line table state machine opcodes are preserved, so this can be used to test the state machine evaluation directly.
llvm-svn: 291470
This patch delays the fix-up step for external induction variable users until
after the dominator tree has been properly updated. This should fix PR30742.
The SCEVExpander in InductionDescriptor::transform can generate code in the
wrong location if the dominator tree is not up-to-date. We should work towards
keeping the dominator tree up-to-date throughout the transformation.
Reference: https://llvm.org/bugs/show_bug.cgi?id=30742
Differential Revision: https://reviews.llvm.org/D28168
llvm-svn: 291462
For i16 zeroext arguments when i16 was a legal type, the
known bits information from the truncate was lost. Insert
a zeroext so the known bits optimizations work with the 32-bit
loads.
Fixes code quality regressions vs. SI in min.ll test.
llvm-svn: 291461
Use the existing AVX2 v8i16 vector shift lowering for v16i8 (extending to v16i32) on AVX512 targets and v32i8 (extending to v32i16) on AVX512BW targets.
Cost model updates to follow.
llvm-svn: 291451
Use the existing AVX2 v8i16 vector shift lowering for v16i16 on AVX512 targets (AVX512BW will have already have lowered with vpsravw).
Cost model updates to follow.
llvm-svn: 291445
Summary:
Originally
i64 = umax t8, Constant:i64<4>
was expanded into
i32,i32 = umax Constant:i32<0>, Constant:i32<0>
i32,i32 = umax t7, Constant:i32<4>
Now instead the two produced umax:es return i32 instead of i32, i32.
Thanks to Jan Vesely for help with the test case.
Patch by mikael.holmen at ericsson.com
Reviewers: bogner, jvesely, tstellarAMD, arsenm
Subscribers: test, wdng, RKSimon, arsenm, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D28135
llvm-svn: 291441
This patch doesn't create thunk for branch operation when following conditions are met:
- Architecture is AArch64
- Relocation target is in the same object file
- Relocation target is close enough to be encoded in immediate offset
In such case we branch directly to the target instead of branching to thunk
Differential revision: https://reviews.llvm.org/D28108
llvm-svn: 291431
invalid.
This fixes use-after-free bugs that will arise with any interesting use
of SCEV.
I've added a dedicated test that works diligently to trigger these kinds
of bugs in the new pass manager and also checks for them explicitly as
well as triggering ASan failures when things go squirly.
llvm-svn: 291426
Summary:
By using stripPointerCasts we can get to the root
value and then walk down the bitcast graph
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28181
llvm-svn: 291405
handlers, make abandonPendingResults public API.
This should make installing asynchronous result handlers thread safe.
The abandonPendingResults method is made public so that clients can disconnect
from a remote even if they have asynchronous handlers awaing results from that
remote. The asynchronous handlers will all receive "abandoned result" errors as
their argument.
llvm-svn: 291399
Running a Debug build of objdump -objc-meta-data with a large Mach-O file is
currently unnecessarily slow.
With some local test input, this change reduces the run time from 75-85s down
to 15-20s.
The two changes are:
Assert on pointer equality not array equality
Replace vector<pair<address, symbol>> with DenseMap<address, symbol>
Additionally, use a std::unique_ptr rather than handling the memory manually.
Patch by Dave Lee!
llvm-svn: 291398
I noticed this problem as part of the ongoing attempt to canonicalize min/max ops in IR.
The debug output shows nodes like this:
t4: i32 = xor t2, Constant:i32<-1>
t21: i8 = setcc t4, Constant:i32<0>, setlt:ch
t14: i32 = select t21, t4, Constant:i32<-1>
And because the select is holding onto the t4 (xor) node while EmitTest creates a new
x86-specific xor node, the lowering results in:
t4: i32 = xor t2, Constant:i32<-1>
t25: i32,i32 = X86ISD::XOR t2, Constant:i32<-1>
t28: i32,glue = X86ISD::CMOV Constant:i32<-1>, t4, Constant:i8<15>, t25:1
Differential Revision: https://reviews.llvm.org/D28374
llvm-svn: 291392
The 'fast' costs should only work for shifts by uniform constants (uniform non-constant are lowered using the slow default implementation).
Logical shifts were not taking into account that we must mask the psrlw result, so the costs needed to be doubled.
Added missing AVX2/AVX512BW costs as well.
llvm-svn: 291391