mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-05-15 11:36:18 +00:00

The dst/dstt/dstst/dststt instructions are nop's on all PowerPC cores that AIX supports. The AIX assembler also does not accept these mnemonics. Turn them into nop's on AIX (similar to dstall).
2707 lines
103 KiB
C++
2707 lines
103 KiB
C++
//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
|
|
// the output mechanism used by `llc'.
|
|
//
|
|
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
|
|
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/PPCInstPrinter.h"
|
|
#include "MCTargetDesc/PPCMCExpr.h"
|
|
#include "MCTargetDesc/PPCMCTargetDesc.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPC.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCSubtarget.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "PPCTargetStreamer.h"
|
|
#include "TargetInfo/PowerPCTargetInfo.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDirectives.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCSectionXCOFF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCSymbolELF.h"
|
|
#include "llvm/MC/MCSymbolXCOFF.h"
|
|
#include "llvm/MC/SectionKind.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Process.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <new>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::XCOFF;
|
|
|
|
#define DEBUG_TYPE "asmprinter"
|
|
|
|
static cl::opt<bool> EnableSSPCanaryBitInTB(
|
|
"aix-ssp-tb-bit", cl::init(false),
|
|
cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
|
|
|
|
// Specialize DenseMapInfo to allow
|
|
// std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
|
|
// This specialization is needed here because that type is used as keys in the
|
|
// map representing TOC entries.
|
|
namespace llvm {
|
|
template <>
|
|
struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
|
|
using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
|
|
|
|
static inline TOCKey getEmptyKey() {
|
|
return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
|
|
}
|
|
static inline TOCKey getTombstoneKey() {
|
|
return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
|
|
}
|
|
static unsigned getHashValue(const TOCKey &PairVal) {
|
|
return detail::combineHashValue(
|
|
DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
|
|
DenseMapInfo<int>::getHashValue(PairVal.second));
|
|
}
|
|
static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
|
|
};
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
class PPCAsmPrinter : public AsmPrinter {
|
|
protected:
|
|
// For TLS on AIX, we need to be able to identify TOC entries of specific
|
|
// VariantKind so we can add the right relocations when we generate the
|
|
// entries. So each entry is represented by a pair of MCSymbol and
|
|
// VariantKind. For example, we need to be able to identify the following
|
|
// entry as a TLSGD entry so we can add the @m relocation:
|
|
// .tc .i[TC],i[TL]@m
|
|
// By default, VK_None is used for the VariantKind.
|
|
MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
|
|
MCSymbol *>
|
|
TOC;
|
|
const PPCSubtarget *Subtarget = nullptr;
|
|
StackMaps SM;
|
|
|
|
public:
|
|
explicit PPCAsmPrinter(TargetMachine &TM,
|
|
std::unique_ptr<MCStreamer> Streamer)
|
|
: AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
|
|
|
|
StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
|
|
|
|
MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym,
|
|
MCSymbolRefExpr::VariantKind Kind =
|
|
MCSymbolRefExpr::VariantKind::VK_None);
|
|
|
|
bool doInitialization(Module &M) override {
|
|
if (!TOC.empty())
|
|
TOC.clear();
|
|
return AsmPrinter::doInitialization(M);
|
|
}
|
|
|
|
void emitInstruction(const MachineInstr *MI) override;
|
|
|
|
/// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
|
|
/// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
|
|
/// The \p MI would be INLINEASM ONLY.
|
|
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
|
|
|
|
void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
|
|
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) override;
|
|
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) override;
|
|
|
|
void emitEndOfAsmFile(Module &M) override;
|
|
|
|
void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
|
|
void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
|
|
void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
Subtarget = &MF.getSubtarget<PPCSubtarget>();
|
|
bool Changed = AsmPrinter::runOnMachineFunction(MF);
|
|
emitXRayTable();
|
|
return Changed;
|
|
}
|
|
};
|
|
|
|
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
|
|
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
|
|
public:
|
|
explicit PPCLinuxAsmPrinter(TargetMachine &TM,
|
|
std::unique_ptr<MCStreamer> Streamer)
|
|
: PPCAsmPrinter(TM, std::move(Streamer)) {}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Linux PPC Assembly Printer";
|
|
}
|
|
|
|
void emitStartOfAsmFile(Module &M) override;
|
|
void emitEndOfAsmFile(Module &) override;
|
|
|
|
void emitFunctionEntryLabel() override;
|
|
|
|
void emitFunctionBodyStart() override;
|
|
void emitFunctionBodyEnd() override;
|
|
void emitInstruction(const MachineInstr *MI) override;
|
|
};
|
|
|
|
class PPCAIXAsmPrinter : public PPCAsmPrinter {
|
|
private:
|
|
/// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
|
|
/// linkage for them in AIX.
|
|
SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols;
|
|
|
|
/// A format indicator and unique trailing identifier to form part of the
|
|
/// sinit/sterm function names.
|
|
std::string FormatIndicatorAndUniqueModId;
|
|
|
|
// Record a list of GlobalAlias associated with a GlobalObject.
|
|
// This is used for AIX's extra-label-at-definition aliasing strategy.
|
|
DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
|
|
GOAliasMap;
|
|
|
|
uint16_t getNumberOfVRSaved();
|
|
void emitTracebackTable();
|
|
|
|
SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
|
|
|
|
void emitGlobalVariableHelper(const GlobalVariable *);
|
|
|
|
public:
|
|
PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
|
|
: PPCAsmPrinter(TM, std::move(Streamer)) {
|
|
if (MAI->isLittleEndian())
|
|
report_fatal_error(
|
|
"cannot create AIX PPC Assembly Printer for a little-endian target");
|
|
}
|
|
|
|
StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
|
|
|
|
bool doInitialization(Module &M) override;
|
|
|
|
void emitXXStructorList(const DataLayout &DL, const Constant *List,
|
|
bool IsCtor) override;
|
|
|
|
void SetupMachineFunction(MachineFunction &MF) override;
|
|
|
|
void emitGlobalVariable(const GlobalVariable *GV) override;
|
|
|
|
void emitFunctionDescriptor() override;
|
|
|
|
void emitFunctionEntryLabel() override;
|
|
|
|
void emitFunctionBodyEnd() override;
|
|
|
|
void emitEndOfAsmFile(Module &) override;
|
|
|
|
void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
|
|
|
|
void emitInstruction(const MachineInstr *MI) override;
|
|
|
|
bool doFinalization(Module &M) override;
|
|
|
|
void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
|
|
raw_ostream &O) {
|
|
// Computing the address of a global symbol, not calling it.
|
|
const GlobalValue *GV = MO.getGlobal();
|
|
getSymbol(GV)->print(O, MAI);
|
|
printOffset(MO.getOffset(), O);
|
|
}
|
|
|
|
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
|
|
raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_Register: {
|
|
// The MI is INLINEASM ONLY and UseVSXReg is always false.
|
|
const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
|
|
|
|
// Linux assembler (Others?) does not take register mnemonics.
|
|
// FIXME - What about special registers used in mfspr/mtspr?
|
|
O << PPCRegisterInfo::stripRegisterPrefix(RegName);
|
|
return;
|
|
}
|
|
case MachineOperand::MO_Immediate:
|
|
O << MO.getImm();
|
|
return;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MO.getMBB()->getSymbol()->print(O, MAI);
|
|
return;
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
|
|
<< MO.getIndex();
|
|
return;
|
|
case MachineOperand::MO_BlockAddress:
|
|
GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
|
|
return;
|
|
case MachineOperand::MO_GlobalAddress: {
|
|
PrintSymbolOperand(MO, O);
|
|
return;
|
|
}
|
|
|
|
default:
|
|
O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// PrintAsmOperand - Print out an operand for an inline asm expression.
|
|
///
|
|
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
// Does this asm operand have a single letter operand modifier?
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0) return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
|
|
case 'L': // Write second word of DImode reference.
|
|
// Verify that this operand has two consecutive registers.
|
|
if (!MI->getOperand(OpNo).isReg() ||
|
|
OpNo+1 == MI->getNumOperands() ||
|
|
!MI->getOperand(OpNo+1).isReg())
|
|
return true;
|
|
++OpNo; // Return the high-part.
|
|
break;
|
|
case 'I':
|
|
// Write 'i' if an integer constant, otherwise nothing. Used to print
|
|
// addi vs add, etc.
|
|
if (MI->getOperand(OpNo).isImm())
|
|
O << "i";
|
|
return false;
|
|
case 'x':
|
|
if(!MI->getOperand(OpNo).isReg())
|
|
return true;
|
|
// This operand uses VSX numbering.
|
|
// If the operand is a VMX register, convert it to a VSX register.
|
|
Register Reg = MI->getOperand(OpNo).getReg();
|
|
if (PPCInstrInfo::isVRRegister(Reg))
|
|
Reg = PPC::VSX32 + (Reg - PPC::V0);
|
|
else if (PPCInstrInfo::isVFRegister(Reg))
|
|
Reg = PPC::VSX32 + (Reg - PPC::VF0);
|
|
const char *RegName;
|
|
RegName = PPCInstPrinter::getRegisterName(Reg);
|
|
RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
|
|
O << RegName;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
printOperand(MI, OpNo, O);
|
|
return false;
|
|
}
|
|
|
|
// At the moment, all inline asm memory operands are a single register.
|
|
// In any case, the output of this routine should always be just one
|
|
// assembler operand.
|
|
|
|
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0) return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default: return true; // Unknown modifier.
|
|
case 'L': // A memory reference to the upper word of a double word op.
|
|
O << getDataLayout().getPointerSize() << "(";
|
|
printOperand(MI, OpNo, O);
|
|
O << ")";
|
|
return false;
|
|
case 'y': // A memory reference for an X-form instruction
|
|
O << "0, ";
|
|
printOperand(MI, OpNo, O);
|
|
return false;
|
|
case 'I':
|
|
// Write 'i' if an integer constant, otherwise nothing. Used to print
|
|
// addi vs add, etc.
|
|
if (MI->getOperand(OpNo).isImm())
|
|
O << "i";
|
|
return false;
|
|
case 'U': // Print 'u' for update form.
|
|
case 'X': // Print 'x' for indexed form.
|
|
// FIXME: Currently for PowerPC memory operands are always loaded
|
|
// into a register, so we never get an update or indexed form.
|
|
// This is bad even for offset forms, since even if we know we
|
|
// have a value in -16(r1), we will generate a load into r<n>
|
|
// and then load from 0(r<n>). Until that issue is fixed,
|
|
// tolerate 'U' and 'X' but don't output anything.
|
|
assert(MI->getOperand(OpNo).isReg());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
assert(MI->getOperand(OpNo).isReg());
|
|
O << "0(";
|
|
printOperand(MI, OpNo, O);
|
|
O << ")";
|
|
return false;
|
|
}
|
|
|
|
/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
|
|
/// exists for it. If not, create one. Then return a symbol that references
|
|
/// the TOC entry.
|
|
MCSymbol *
|
|
PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym,
|
|
MCSymbolRefExpr::VariantKind Kind) {
|
|
MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
|
|
if (!TOCEntry)
|
|
TOCEntry = createTempSymbol("C");
|
|
return TOCEntry;
|
|
}
|
|
|
|
void PPCAsmPrinter::emitEndOfAsmFile(Module &M) {
|
|
emitStackMaps(SM);
|
|
}
|
|
|
|
void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
|
|
unsigned NumNOPBytes = MI.getOperand(1).getImm();
|
|
|
|
auto &Ctx = OutStreamer->getContext();
|
|
MCSymbol *MILabel = Ctx.createTempSymbol();
|
|
OutStreamer->emitLabel(MILabel);
|
|
|
|
SM.recordStackMap(*MILabel, MI);
|
|
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
|
|
|
|
// Scan ahead to trim the shadow.
|
|
const MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineBasicBlock::const_iterator MII(MI);
|
|
++MII;
|
|
while (NumNOPBytes > 0) {
|
|
if (MII == MBB.end() || MII->isCall() ||
|
|
MII->getOpcode() == PPC::DBG_VALUE ||
|
|
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
|
|
MII->getOpcode() == TargetOpcode::STACKMAP)
|
|
break;
|
|
++MII;
|
|
NumNOPBytes -= 4;
|
|
}
|
|
|
|
// Emit nops.
|
|
for (unsigned i = 0; i < NumNOPBytes; i += 4)
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
|
|
}
|
|
|
|
// Lower a patchpoint of the form:
|
|
// [<def>], <id>, <numBytes>, <target>, <numArgs>
|
|
void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
|
|
auto &Ctx = OutStreamer->getContext();
|
|
MCSymbol *MILabel = Ctx.createTempSymbol();
|
|
OutStreamer->emitLabel(MILabel);
|
|
|
|
SM.recordPatchPoint(*MILabel, MI);
|
|
PatchPointOpers Opers(&MI);
|
|
|
|
unsigned EncodedBytes = 0;
|
|
const MachineOperand &CalleeMO = Opers.getCallTarget();
|
|
|
|
if (CalleeMO.isImm()) {
|
|
int64_t CallTarget = CalleeMO.getImm();
|
|
if (CallTarget) {
|
|
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
|
|
"High 16 bits of call target should be zero.");
|
|
Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
|
|
EncodedBytes = 0;
|
|
// Materialize the jump address:
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
|
|
.addReg(ScratchReg)
|
|
.addImm((CallTarget >> 32) & 0xFFFF));
|
|
++EncodedBytes;
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
|
|
.addReg(ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(32).addImm(16));
|
|
++EncodedBytes;
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
|
|
.addReg(ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm((CallTarget >> 16) & 0xFFFF));
|
|
++EncodedBytes;
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
|
|
.addReg(ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(CallTarget & 0xFFFF));
|
|
|
|
// Save the current TOC pointer before the remote call.
|
|
int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
|
|
.addReg(PPC::X2)
|
|
.addImm(TOCSaveOffset)
|
|
.addReg(PPC::X1));
|
|
++EncodedBytes;
|
|
|
|
// If we're on ELFv1, then we need to load the actual function pointer
|
|
// from the function descriptor.
|
|
if (!Subtarget->isELFv2ABI()) {
|
|
// Load the new TOC pointer and the function address, but not r11
|
|
// (needing this is rare, and loading it here would prevent passing it
|
|
// via a 'nest' parameter.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
|
|
.addReg(PPC::X2)
|
|
.addImm(8)
|
|
.addReg(ScratchReg));
|
|
++EncodedBytes;
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
|
|
.addReg(ScratchReg)
|
|
.addImm(0)
|
|
.addReg(ScratchReg));
|
|
++EncodedBytes;
|
|
}
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
|
|
.addReg(ScratchReg));
|
|
++EncodedBytes;
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
|
|
++EncodedBytes;
|
|
|
|
// Restore the TOC pointer after the call.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
|
|
.addReg(PPC::X2)
|
|
.addImm(TOCSaveOffset)
|
|
.addReg(PPC::X1));
|
|
++EncodedBytes;
|
|
}
|
|
} else if (CalleeMO.isGlobal()) {
|
|
const GlobalValue *GValue = CalleeMO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
|
|
.addExpr(SymVar));
|
|
EncodedBytes += 2;
|
|
}
|
|
|
|
// Each instruction is 4 bytes.
|
|
EncodedBytes *= 4;
|
|
|
|
// Emit padding.
|
|
unsigned NumBytes = Opers.getNumPatchBytes();
|
|
assert(NumBytes >= EncodedBytes &&
|
|
"Patchpoint can't request size less than the length of a call.");
|
|
assert((NumBytes - EncodedBytes) % 4 == 0 &&
|
|
"Invalid number of NOP bytes requested!");
|
|
for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
|
|
}
|
|
|
|
/// This helper function creates the TlsGetAddr MCSymbol for AIX. We will
|
|
/// create the csect and use the qual-name symbol instead of creating just the
|
|
/// external symbol.
|
|
static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) {
|
|
return Ctx
|
|
.getXCOFFSection(".__tls_get_addr", SectionKind::getText(),
|
|
XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
|
|
->getQualNameSymbol();
|
|
}
|
|
|
|
/// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
|
|
/// call to __tls_get_addr to the current output stream.
|
|
void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
|
|
MCSymbolRefExpr::VariantKind VK) {
|
|
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
|
|
unsigned Opcode = PPC::BL8_NOP_TLS;
|
|
|
|
assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
|
|
if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
|
|
MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
|
|
Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
|
|
Opcode = PPC::BL8_NOTOC_TLS;
|
|
}
|
|
const Module *M = MF->getFunction().getParent();
|
|
|
|
assert(MI->getOperand(0).isReg() &&
|
|
((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
|
|
(!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
|
|
"GETtls[ld]ADDR[32] must define GPR3");
|
|
assert(MI->getOperand(1).isReg() &&
|
|
((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
|
|
(!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
|
|
"GETtls[ld]ADDR[32] must read GPR3");
|
|
|
|
if (Subtarget->isAIXABI()) {
|
|
// On AIX, the variable offset should already be in R4 and the region handle
|
|
// should already be in R3.
|
|
// For TLSGD, which currently is the only supported access model, we only
|
|
// need to generate an absolute branch to .__tls_get_addr.
|
|
Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
|
|
(void)VarOffsetReg;
|
|
assert(MI->getOperand(2).isReg() &&
|
|
MI->getOperand(2).getReg() == VarOffsetReg &&
|
|
"GETtls[ld]ADDR[32] must read GPR4");
|
|
MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
|
|
const MCExpr *TlsRef = MCSymbolRefExpr::create(
|
|
TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
|
|
return;
|
|
}
|
|
|
|
MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
|
|
|
|
if (Subtarget->is32BitELFABI() && isPositionIndependent())
|
|
Kind = MCSymbolRefExpr::VK_PLT;
|
|
|
|
const MCExpr *TlsRef =
|
|
MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
|
|
|
|
// Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
|
|
if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
|
|
M->getPICLevel() == PICLevel::BigPIC)
|
|
TlsRef = MCBinaryExpr::createAdd(
|
|
TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(Subtarget->isPPC64() ? Opcode
|
|
: (unsigned)PPC::BL_TLS)
|
|
.addExpr(TlsRef)
|
|
.addExpr(SymVar));
|
|
}
|
|
|
|
/// Map a machine operand for a TOC pseudo-machine instruction to its
|
|
/// corresponding MCSymbol.
|
|
static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
|
|
AsmPrinter &AP) {
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return AP.getSymbol(MO.getGlobal());
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
return AP.GetCPISymbol(MO.getIndex());
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return AP.GetJTISymbol(MO.getIndex());
|
|
case MachineOperand::MO_BlockAddress:
|
|
return AP.GetBlockAddressSymbol(MO.getBlockAddress());
|
|
default:
|
|
llvm_unreachable("Unexpected operand type to get symbol.");
|
|
}
|
|
}
|
|
|
|
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
|
|
/// the current output stream.
|
|
///
|
|
void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
|
|
MCInst TmpInst;
|
|
const bool IsPPC64 = Subtarget->isPPC64();
|
|
const bool IsAIX = Subtarget->isAIXABI();
|
|
const Module *M = MF->getFunction().getParent();
|
|
PICLevel::Level PL = M->getPICLevel();
|
|
|
|
#ifndef NDEBUG
|
|
// Validate that SPE and FPU are mutually exclusive in codegen
|
|
if (!MI->isInlineAsm()) {
|
|
for (const MachineOperand &MO: MI->operands()) {
|
|
if (MO.isReg()) {
|
|
Register Reg = MO.getReg();
|
|
if (Subtarget->hasSPE()) {
|
|
if (PPC::F4RCRegClass.contains(Reg) ||
|
|
PPC::F8RCRegClass.contains(Reg) ||
|
|
PPC::VFRCRegClass.contains(Reg) ||
|
|
PPC::VRRCRegClass.contains(Reg) ||
|
|
PPC::VSFRCRegClass.contains(Reg) ||
|
|
PPC::VSSRCRegClass.contains(Reg)
|
|
)
|
|
llvm_unreachable("SPE targets cannot have FPRegs!");
|
|
} else {
|
|
if (PPC::SPERCRegClass.contains(Reg))
|
|
llvm_unreachable("SPE register found in FPU-targeted code!");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
|
|
ptrdiff_t OriginalOffset) {
|
|
// Apply an offset to the TOC-based expression such that the adjusted
|
|
// notional offset from the TOC base (to be encoded into the instruction's D
|
|
// or DS field) is the signed 16-bit truncation of the original notional
|
|
// offset from the TOC base.
|
|
// This is consistent with the treatment used both by XL C/C++ and
|
|
// by AIX ld -r.
|
|
ptrdiff_t Adjustment =
|
|
OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
|
|
return MCBinaryExpr::createAdd(
|
|
Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
|
|
};
|
|
|
|
auto getTOCEntryLoadingExprForXCOFF =
|
|
[IsPPC64, getTOCRelocAdjustedExprForXCOFF,
|
|
this](const MCSymbol *MOSymbol, const MCExpr *Expr,
|
|
MCSymbolRefExpr::VariantKind VK =
|
|
MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
|
|
const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
|
|
const auto TOCEntryIter = TOC.find({MOSymbol, VK});
|
|
assert(TOCEntryIter != TOC.end() &&
|
|
"Could not find the TOC entry for this symbol.");
|
|
const ptrdiff_t EntryDistanceFromTOCBase =
|
|
(TOCEntryIter - TOC.begin()) * EntryByteSize;
|
|
constexpr int16_t PositiveTOCRange = INT16_MAX;
|
|
|
|
if (EntryDistanceFromTOCBase > PositiveTOCRange)
|
|
return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
|
|
|
|
return Expr;
|
|
};
|
|
auto GetVKForMO = [&](const MachineOperand &MO) {
|
|
// For GD TLS access on AIX, we have two TOC entries for the symbol (one for
|
|
// the variable offset and the other for the region handle). They are
|
|
// differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
|
|
if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG)
|
|
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
|
|
if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG)
|
|
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
|
|
return MCSymbolRefExpr::VariantKind::VK_None;
|
|
};
|
|
|
|
// Lower multi-instruction pseudo operations.
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case TargetOpcode::DBG_VALUE:
|
|
llvm_unreachable("Should be handled target independently");
|
|
case TargetOpcode::STACKMAP:
|
|
return LowerSTACKMAP(SM, *MI);
|
|
case TargetOpcode::PATCHPOINT:
|
|
return LowerPATCHPOINT(SM, *MI);
|
|
|
|
case PPC::MoveGOTtoLR: {
|
|
// Transform %lr = MoveGOTtoLR
|
|
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
|
|
// _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
|
|
// _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
|
|
// blrl
|
|
// This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
|
|
MCSymbol *GOTSymbol =
|
|
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
|
|
const MCExpr *OffsExpr =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
|
|
MCSymbolRefExpr::VK_PPC_LOCAL,
|
|
OutContext),
|
|
MCConstantExpr::create(4, OutContext),
|
|
OutContext);
|
|
|
|
// Emit the 'bl'.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
|
|
return;
|
|
}
|
|
case PPC::MovePCtoLR:
|
|
case PPC::MovePCtoLR8: {
|
|
// Transform %lr = MovePCtoLR
|
|
// Into this, where the label is the PIC base:
|
|
// bl L1$pb
|
|
// L1$pb:
|
|
MCSymbol *PICBase = MF->getPICBaseSymbol();
|
|
|
|
// Emit the 'bl'.
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(PPC::BL)
|
|
// FIXME: We would like an efficient form for this, so we
|
|
// don't have to do a lot of extra uniquing.
|
|
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
|
|
|
|
// Emit the label.
|
|
OutStreamer->emitLabel(PICBase);
|
|
return;
|
|
}
|
|
case PPC::UpdateGBR: {
|
|
// Transform %rd = UpdateGBR(%rt, %ri)
|
|
// Into: lwz %rt, .L0$poff - .L0$pb(%ri)
|
|
// add %rd, %rt, %ri
|
|
// or into (if secure plt mode is on):
|
|
// addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
|
|
// addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
|
|
// Get the offset from the GOT Base Register to the GOT
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
|
|
unsigned PICR = TmpInst.getOperand(0).getReg();
|
|
MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
|
|
M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
|
|
: ".LTOC");
|
|
const MCExpr *PB =
|
|
MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
|
|
|
|
const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
|
|
MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
|
|
|
|
const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
|
|
|
|
const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
|
|
return;
|
|
} else {
|
|
MCSymbol *PICOffset =
|
|
MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
|
|
TmpInst.setOpcode(PPC::LWZ);
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
|
|
const MCExpr *PB =
|
|
MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
|
|
MCSymbolRefExpr::VK_None,
|
|
OutContext);
|
|
const MCOperand TR = TmpInst.getOperand(1);
|
|
const MCOperand PICR = TmpInst.getOperand(0);
|
|
|
|
// Step 1: lwz %rt, .L$poff - .L$pb(%ri)
|
|
TmpInst.getOperand(1) =
|
|
MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
|
|
TmpInst.getOperand(0) = TR;
|
|
TmpInst.getOperand(2) = PICR;
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
|
|
TmpInst.setOpcode(PPC::ADD4);
|
|
TmpInst.getOperand(0) = PICR;
|
|
TmpInst.getOperand(1) = TR;
|
|
TmpInst.getOperand(2) = PICR;
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
}
|
|
case PPC::LWZtoc: {
|
|
// Transform %rN = LWZtoc @op1, %r2
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to LWZ.
|
|
TmpInst.setOpcode(PPC::LWZ);
|
|
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
|
|
"Invalid operand for LWZtoc.");
|
|
|
|
// Map the operand to its corresponding MCSymbol.
|
|
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
// Create a reference to the GOT entry for the symbol. The GOT entry will be
|
|
// synthesized later.
|
|
if (PL == PICLevel::SmallPIC && !IsAIX) {
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
|
|
OutContext);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
|
|
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
|
|
|
|
// Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
|
|
// storage allocated in the TOC which contains the address of
|
|
// 'MOSymbol'. Said TOC entry will be synthesized later.
|
|
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
|
|
|
|
// AIX uses the label directly as the lwz displacement operand for
|
|
// references into the toc section. The displacement value will be generated
|
|
// relative to the toc-base.
|
|
if (IsAIX) {
|
|
assert(
|
|
TM.getCodeModel() == CodeModel::Small &&
|
|
"This pseudo should only be selected for 32-bit small code model.");
|
|
Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
|
|
|
|
// Print MO for better readability
|
|
if (isVerbose())
|
|
OutStreamer->GetCommentOS() << MO << '\n';
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
|
|
// Create an explicit subtract expression between the local symbol and
|
|
// '.LTOC' to manifest the toc-relative offset.
|
|
const MCExpr *PB = MCSymbolRefExpr::create(
|
|
OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
|
|
Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::ADDItoc: {
|
|
assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
|
|
"Operand only valid in AIX 32 bit mode");
|
|
|
|
// Transform %rN = ADDItoc @op1, %r2.
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to load address.
|
|
TmpInst.setOpcode(PPC::LA);
|
|
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
assert(MO.isGlobal() && "Invalid operand for ADDItoc.");
|
|
|
|
// Map the operand to its corresponding MCSymbol.
|
|
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
|
|
|
|
TmpInst.getOperand(1) = TmpInst.getOperand(2);
|
|
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::LDtocJTI:
|
|
case PPC::LDtocCPT:
|
|
case PPC::LDtocBA:
|
|
case PPC::LDtoc: {
|
|
// Transform %x3 = LDtoc @min1, %x2
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to LD.
|
|
TmpInst.setOpcode(PPC::LD);
|
|
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
|
|
"Invalid operand!");
|
|
|
|
// Map the operand to its corresponding MCSymbol.
|
|
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
|
|
|
|
// Map the machine operand to its corresponding MCSymbol, then map the
|
|
// global address operand to be a reference to the TOC entry we will
|
|
// synthesize later.
|
|
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
|
|
|
|
MCSymbolRefExpr::VariantKind VKExpr =
|
|
IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
|
|
const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(
|
|
IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
|
|
|
|
// Print MO for better readability
|
|
if (isVerbose() && IsAIX)
|
|
OutStreamer->GetCommentOS() << MO << '\n';
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::ADDIStocHA: {
|
|
assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) &&
|
|
"This pseudo should only be selected for 32-bit large code model on"
|
|
" AIX.");
|
|
|
|
// Transform %rd = ADDIStocHA %rA, @sym(%r2)
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to ADDIS.
|
|
TmpInst.setOpcode(PPC::ADDIS);
|
|
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
|
|
"Invalid operand for ADDIStocHA.");
|
|
|
|
// Map the machine operand to its corresponding MCSymbol.
|
|
MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
|
|
|
|
// Always use TOC on AIX. Map the global address operand to be a reference
|
|
// to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
|
|
// reference the storage allocated in the TOC which contains the address of
|
|
// 'MOSymbol'.
|
|
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
|
|
const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
|
|
MCSymbolRefExpr::VK_PPC_U,
|
|
OutContext);
|
|
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::LWZtocL: {
|
|
assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large &&
|
|
"This pseudo should only be selected for 32-bit large code model on"
|
|
" AIX.");
|
|
|
|
// Transform %rd = LWZtocL @sym, %rs.
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to lwz.
|
|
TmpInst.setOpcode(PPC::LWZ);
|
|
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
|
|
"Invalid operand for LWZtocL.");
|
|
|
|
// Map the machine operand to its corresponding MCSymbol.
|
|
MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
|
|
|
|
// Always use TOC on AIX. Map the global address operand to be a reference
|
|
// to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
|
|
// reference the storage allocated in the TOC which contains the address of
|
|
// 'MOSymbol'.
|
|
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
|
|
const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
|
|
MCSymbolRefExpr::VK_PPC_L,
|
|
OutContext);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::ADDIStocHA8: {
|
|
// Transform %xd = ADDIStocHA8 %x2, @sym
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to ADDIS8. If the global address is the address of
|
|
// an external symbol, is a jump table address, is a block address, or is a
|
|
// constant pool index with large code model enabled, then generate a TOC
|
|
// entry and reference that. Otherwise, reference the symbol directly.
|
|
TmpInst.setOpcode(PPC::ADDIS8);
|
|
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
|
|
"Invalid operand for ADDIStocHA8!");
|
|
|
|
const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
|
|
|
|
const bool GlobalToc =
|
|
MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
|
|
if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
|
|
(MO.isCPI() && TM.getCodeModel() == CodeModel::Large))
|
|
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
|
|
|
|
VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
|
|
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
|
|
|
|
if (!MO.isJTI() && MO.getOffset())
|
|
Exp = MCBinaryExpr::createAdd(Exp,
|
|
MCConstantExpr::create(MO.getOffset(),
|
|
OutContext),
|
|
OutContext);
|
|
|
|
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::LDtocL: {
|
|
// Transform %xd = LDtocL @sym, %xs
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to LD. If the global address is the address of
|
|
// an external symbol, is a jump table address, is a block address, or is
|
|
// a constant pool index with large code model enabled, then generate a
|
|
// TOC entry and reference that. Otherwise, reference the symbol directly.
|
|
TmpInst.setOpcode(PPC::LD);
|
|
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
|
|
MO.isBlockAddress()) &&
|
|
"Invalid operand for LDtocL!");
|
|
|
|
LLVM_DEBUG(assert(
|
|
(!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
|
|
"LDtocL used on symbol that could be accessed directly is "
|
|
"invalid. Must match ADDIStocHA8."));
|
|
|
|
const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
|
|
|
|
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
|
|
|
|
if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large)
|
|
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
|
|
|
|
VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::ADDItocL: {
|
|
// Transform %xd = ADDItocL %xs, @sym
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to ADDI8. If the global address is external, then
|
|
// generate a TOC entry and reference that. Otherwise, reference the
|
|
// symbol directly.
|
|
TmpInst.setOpcode(PPC::ADDI8);
|
|
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL.");
|
|
|
|
LLVM_DEBUG(assert(
|
|
!(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
|
|
"Interposable definitions must use indirect access."));
|
|
|
|
const MCExpr *Exp =
|
|
MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this),
|
|
MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext);
|
|
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case PPC::ADDISgotTprelHA: {
|
|
// Transform: %xd = ADDISgotTprelHA %x2, @sym
|
|
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
|
|
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymGotTprel =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
|
|
OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymGotTprel));
|
|
return;
|
|
}
|
|
case PPC::LDgotTprelL:
|
|
case PPC::LDgotTprelL32: {
|
|
// Transform %xd = LDgotTprelL @sym, %xs
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
// Change the opcode to LD.
|
|
TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *Exp = MCSymbolRefExpr::create(
|
|
MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
|
|
: MCSymbolRefExpr::VK_PPC_GOT_TPREL,
|
|
OutContext);
|
|
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
|
|
case PPC::PPC32PICGOT: {
|
|
MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
|
|
MCSymbol *GOTRef = OutContext.createTempSymbol();
|
|
MCSymbol *NextInstr = OutContext.createTempSymbol();
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
|
|
// FIXME: We would like an efficient form for this, so we don't have to do
|
|
// a lot of extra uniquing.
|
|
.addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
|
|
const MCExpr *OffsExpr =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
|
|
MCSymbolRefExpr::create(GOTRef, OutContext),
|
|
OutContext);
|
|
OutStreamer->emitLabel(GOTRef);
|
|
OutStreamer->emitValue(OffsExpr, 4);
|
|
OutStreamer->emitLabel(NextInstr);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
|
|
.addReg(MI->getOperand(0).getReg()));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addImm(0)
|
|
.addReg(MI->getOperand(0).getReg()));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addReg(MI->getOperand(0).getReg()));
|
|
return;
|
|
}
|
|
case PPC::PPC32GOT: {
|
|
MCSymbol *GOTSymbol =
|
|
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
|
|
const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
|
|
GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
|
|
const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
|
|
GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addExpr(SymGotTlsL));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addExpr(SymGotTlsHA));
|
|
return;
|
|
}
|
|
case PPC::ADDIStlsgdHA: {
|
|
// Transform: %xd = ADDIStlsgdHA %x2, @sym
|
|
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
|
|
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymGotTlsGD =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
|
|
OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymGotTlsGD));
|
|
return;
|
|
}
|
|
case PPC::ADDItlsgdL:
|
|
// Transform: %xd = ADDItlsgdL %xs, @sym
|
|
// Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
|
|
case PPC::ADDItlsgdL32: {
|
|
// Transform: %rd = ADDItlsgdL32 %rs, @sym
|
|
// Into: %rd = ADDI %rs, sym@got@tlsgd
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
|
|
MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
|
|
: MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
|
|
OutContext);
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymGotTlsGD));
|
|
return;
|
|
}
|
|
case PPC::GETtlsADDR:
|
|
// Transform: %x3 = GETtlsADDR %x3, @sym
|
|
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
|
|
case PPC::GETtlsADDRPCREL:
|
|
case PPC::GETtlsADDR32AIX:
|
|
case PPC::GETtlsADDR64AIX:
|
|
// Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
|
|
// Into: BLA .__tls_get_addr()
|
|
// Unlike on Linux, there is no symbol or relocation needed for this call.
|
|
case PPC::GETtlsADDR32: {
|
|
// Transform: %r3 = GETtlsADDR32 %r3, @sym
|
|
// Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
|
|
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
|
|
return;
|
|
}
|
|
case PPC::ADDIStlsldHA: {
|
|
// Transform: %xd = ADDIStlsldHA %x2, @sym
|
|
// Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
|
|
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymGotTlsLD =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
|
|
OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymGotTlsLD));
|
|
return;
|
|
}
|
|
case PPC::ADDItlsldL:
|
|
// Transform: %xd = ADDItlsldL %xs, @sym
|
|
// Into: %xd = ADDI8 %xs, sym@got@tlsld@l
|
|
case PPC::ADDItlsldL32: {
|
|
// Transform: %rd = ADDItlsldL32 %rs, @sym
|
|
// Into: %rd = ADDI %rs, sym@got@tlsld
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
|
|
MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
|
|
: MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
|
|
OutContext);
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymGotTlsLD));
|
|
return;
|
|
}
|
|
case PPC::GETtlsldADDR:
|
|
// Transform: %x3 = GETtlsldADDR %x3, @sym
|
|
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
|
|
case PPC::GETtlsldADDRPCREL:
|
|
case PPC::GETtlsldADDR32: {
|
|
// Transform: %r3 = GETtlsldADDR32 %r3, @sym
|
|
// Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
|
|
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
|
|
return;
|
|
}
|
|
case PPC::ADDISdtprelHA:
|
|
// Transform: %xd = ADDISdtprelHA %xs, @sym
|
|
// Into: %xd = ADDIS8 %xs, sym@dtprel@ha
|
|
case PPC::ADDISdtprelHA32: {
|
|
// Transform: %rd = ADDISdtprelHA32 %rs, @sym
|
|
// Into: %rd = ADDIS %rs, sym@dtprel@ha
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymDtprel =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
|
|
OutContext);
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymDtprel));
|
|
return;
|
|
}
|
|
case PPC::PADDIdtprel: {
|
|
// Transform: %rd = PADDIdtprel %rs, @sym
|
|
// Into: %rd = PADDI8 %rs, sym@dtprel
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymDtprel = MCSymbolRefExpr::create(
|
|
MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymDtprel));
|
|
return;
|
|
}
|
|
|
|
case PPC::ADDIdtprelL:
|
|
// Transform: %xd = ADDIdtprelL %xs, @sym
|
|
// Into: %xd = ADDI8 %xs, sym@dtprel@l
|
|
case PPC::ADDIdtprelL32: {
|
|
// Transform: %rd = ADDIdtprelL32 %rs, @sym
|
|
// Into: %rd = ADDI %rs, sym@dtprel@l
|
|
const MachineOperand &MO = MI->getOperand(2);
|
|
const GlobalValue *GValue = MO.getGlobal();
|
|
MCSymbol *MOSymbol = getSymbol(GValue);
|
|
const MCExpr *SymDtprel =
|
|
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
|
|
OutContext);
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addExpr(SymDtprel));
|
|
return;
|
|
}
|
|
case PPC::MFOCRF:
|
|
case PPC::MFOCRF8:
|
|
if (!Subtarget->hasMFOCRF()) {
|
|
// Transform: %r3 = MFOCRF %cr7
|
|
// Into: %r3 = MFCR ;; cr7
|
|
unsigned NewOpcode =
|
|
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
|
|
OutStreamer->AddComment(PPCInstPrinter::
|
|
getRegisterName(MI->getOperand(1).getReg()));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
|
|
.addReg(MI->getOperand(0).getReg()));
|
|
return;
|
|
}
|
|
break;
|
|
case PPC::MTOCRF:
|
|
case PPC::MTOCRF8:
|
|
if (!Subtarget->hasMFOCRF()) {
|
|
// Transform: %cr7 = MTOCRF %r3
|
|
// Into: MTCRF mask, %r3 ;; cr7
|
|
unsigned NewOpcode =
|
|
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
|
|
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
|
|
->getEncodingValue(MI->getOperand(0).getReg());
|
|
OutStreamer->AddComment(PPCInstPrinter::
|
|
getRegisterName(MI->getOperand(0).getReg()));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
|
|
.addImm(Mask)
|
|
.addReg(MI->getOperand(1).getReg()));
|
|
return;
|
|
}
|
|
break;
|
|
case PPC::LD:
|
|
case PPC::STD:
|
|
case PPC::LWA_32:
|
|
case PPC::LWA: {
|
|
// Verify alignment is legal, so we don't create relocations
|
|
// that can't be supported.
|
|
unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
if (MO.isGlobal()) {
|
|
const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout();
|
|
if (MO.getGlobal()->getPointerAlignment(DL) < 4)
|
|
llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
|
|
}
|
|
// Now process the instruction normally.
|
|
break;
|
|
}
|
|
case PPC::PseudoEIEIO: {
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
|
|
return;
|
|
}
|
|
}
|
|
|
|
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
}
|
|
|
|
void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
|
|
if (!Subtarget->isPPC64())
|
|
return PPCAsmPrinter::emitInstruction(MI);
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return PPCAsmPrinter::emitInstruction(MI);
|
|
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
|
|
// .begin:
|
|
// b .end # lis 0, FuncId[16..32]
|
|
// nop # li 0, FuncId[0..15]
|
|
// std 0, -8(1)
|
|
// mflr 0
|
|
// bl __xray_FunctionEntry
|
|
// mtlr 0
|
|
// .end:
|
|
//
|
|
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
|
|
// of instructions change.
|
|
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
|
|
MCSymbol *EndOfSled = OutContext.createTempSymbol();
|
|
OutStreamer->emitLabel(BeginOfSled);
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(PPC::B).addExpr(
|
|
MCSymbolRefExpr::create(EndOfSled, OutContext)));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(PPC::BL8_NOP)
|
|
.addExpr(MCSymbolRefExpr::create(
|
|
OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
|
|
OutContext)));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
|
|
OutStreamer->emitLabel(EndOfSled);
|
|
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
|
|
break;
|
|
}
|
|
case TargetOpcode::PATCHABLE_RET: {
|
|
unsigned RetOpcode = MI->getOperand(0).getImm();
|
|
MCInst RetInst;
|
|
RetInst.setOpcode(RetOpcode);
|
|
for (const auto &MO : llvm::drop_begin(MI->operands())) {
|
|
MCOperand MCOp;
|
|
if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
|
|
RetInst.addOperand(MCOp);
|
|
}
|
|
|
|
bool IsConditional;
|
|
if (RetOpcode == PPC::BCCLR) {
|
|
IsConditional = true;
|
|
} else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
|
|
RetOpcode == PPC::TCRETURNai8) {
|
|
break;
|
|
} else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
|
|
IsConditional = false;
|
|
} else {
|
|
EmitToStreamer(*OutStreamer, RetInst);
|
|
break;
|
|
}
|
|
|
|
MCSymbol *FallthroughLabel;
|
|
if (IsConditional) {
|
|
// Before:
|
|
// bgtlr cr0
|
|
//
|
|
// After:
|
|
// ble cr0, .end
|
|
// .p2align 3
|
|
// .begin:
|
|
// blr # lis 0, FuncId[16..32]
|
|
// nop # li 0, FuncId[0..15]
|
|
// std 0, -8(1)
|
|
// mflr 0
|
|
// bl __xray_FunctionExit
|
|
// mtlr 0
|
|
// blr
|
|
// .end:
|
|
//
|
|
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
|
|
// of instructions change.
|
|
FallthroughLabel = OutContext.createTempSymbol();
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::BCC)
|
|
.addImm(PPC::InvertPredicate(
|
|
static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
|
|
.addReg(MI->getOperand(2).getReg())
|
|
.addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
|
|
RetInst = MCInst();
|
|
RetInst.setOpcode(PPC::BLR8);
|
|
}
|
|
// .p2align 3
|
|
// .begin:
|
|
// b(lr)? # lis 0, FuncId[16..32]
|
|
// nop # li 0, FuncId[0..15]
|
|
// std 0, -8(1)
|
|
// mflr 0
|
|
// bl __xray_FunctionExit
|
|
// mtlr 0
|
|
// b(lr)?
|
|
//
|
|
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
|
|
// of instructions change.
|
|
OutStreamer->emitCodeAlignment(8);
|
|
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
|
|
OutStreamer->emitLabel(BeginOfSled);
|
|
EmitToStreamer(*OutStreamer, RetInst);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
|
|
EmitToStreamer(*OutStreamer,
|
|
MCInstBuilder(PPC::BL8_NOP)
|
|
.addExpr(MCSymbolRefExpr::create(
|
|
OutContext.getOrCreateSymbol("__xray_FunctionExit"),
|
|
OutContext)));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
|
|
EmitToStreamer(*OutStreamer, RetInst);
|
|
if (IsConditional)
|
|
OutStreamer->emitLabel(FallthroughLabel);
|
|
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
|
|
break;
|
|
}
|
|
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
|
|
llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
|
|
case TargetOpcode::PATCHABLE_TAIL_CALL:
|
|
// TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
|
|
// normal function exit from a tail exit.
|
|
llvm_unreachable("Tail call is handled in the normal case. See comments "
|
|
"around this assert.");
|
|
}
|
|
}
|
|
|
|
void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
|
|
if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
|
|
PPCTargetStreamer *TS =
|
|
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
|
|
if (TS)
|
|
TS->emitAbiVersion(2);
|
|
}
|
|
|
|
if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
|
|
!isPositionIndependent())
|
|
return AsmPrinter::emitStartOfAsmFile(M);
|
|
|
|
if (M.getPICLevel() == PICLevel::SmallPIC)
|
|
return AsmPrinter::emitStartOfAsmFile(M);
|
|
|
|
OutStreamer->SwitchSection(OutContext.getELFSection(
|
|
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
|
|
|
|
MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
|
|
MCSymbol *CurrentPos = OutContext.createTempSymbol();
|
|
|
|
OutStreamer->emitLabel(CurrentPos);
|
|
|
|
// The GOT pointer points to the middle of the GOT, in order to reference the
|
|
// entire 64kB range. 0x8000 is the midpoint.
|
|
const MCExpr *tocExpr =
|
|
MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
|
|
MCConstantExpr::create(0x8000, OutContext),
|
|
OutContext);
|
|
|
|
OutStreamer->emitAssignment(TOCSym, tocExpr);
|
|
|
|
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
|
|
}
|
|
|
|
void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
|
|
// linux/ppc32 - Normal entry label.
|
|
if (!Subtarget->isPPC64() &&
|
|
(!isPositionIndependent() ||
|
|
MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
|
|
return AsmPrinter::emitFunctionEntryLabel();
|
|
|
|
if (!Subtarget->isPPC64()) {
|
|
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
|
|
if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
|
|
MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
|
|
MCSymbol *PICBase = MF->getPICBaseSymbol();
|
|
OutStreamer->emitLabel(RelocSymbol);
|
|
|
|
const MCExpr *OffsExpr =
|
|
MCBinaryExpr::createSub(
|
|
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
|
|
OutContext),
|
|
MCSymbolRefExpr::create(PICBase, OutContext),
|
|
OutContext);
|
|
OutStreamer->emitValue(OffsExpr, 4);
|
|
OutStreamer->emitLabel(CurrentFnSym);
|
|
return;
|
|
} else
|
|
return AsmPrinter::emitFunctionEntryLabel();
|
|
}
|
|
|
|
// ELFv2 ABI - Normal entry label.
|
|
if (Subtarget->isELFv2ABI()) {
|
|
// In the Large code model, we allow arbitrary displacements between
|
|
// the text section and its associated TOC section. We place the
|
|
// full 8-byte offset to the TOC in memory immediately preceding
|
|
// the function global entry point.
|
|
if (TM.getCodeModel() == CodeModel::Large
|
|
&& !MF->getRegInfo().use_empty(PPC::X2)) {
|
|
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
|
|
|
|
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
|
|
MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
|
|
const MCExpr *TOCDeltaExpr =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
|
|
MCSymbolRefExpr::create(GlobalEPSymbol,
|
|
OutContext),
|
|
OutContext);
|
|
|
|
OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
|
|
OutStreamer->emitValue(TOCDeltaExpr, 8);
|
|
}
|
|
return AsmPrinter::emitFunctionEntryLabel();
|
|
}
|
|
|
|
// Emit an official procedure descriptor.
|
|
MCSectionSubPair Current = OutStreamer->getCurrentSection();
|
|
MCSectionELF *Section = OutStreamer->getContext().getELFSection(
|
|
".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
|
|
OutStreamer->SwitchSection(Section);
|
|
OutStreamer->emitLabel(CurrentFnSym);
|
|
OutStreamer->emitValueToAlignment(8);
|
|
MCSymbol *Symbol1 = CurrentFnSymForSize;
|
|
// Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
|
|
// entry point.
|
|
OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
|
|
8 /*size*/);
|
|
MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
|
|
// Generates a R_PPC64_TOC relocation for TOC base insertion.
|
|
OutStreamer->emitValue(
|
|
MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
|
|
8/*size*/);
|
|
// Emit a null environment pointer.
|
|
OutStreamer->emitIntValue(0, 8 /* size */);
|
|
OutStreamer->SwitchSection(Current.first, Current.second);
|
|
}
|
|
|
|
void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
bool isPPC64 = DL.getPointerSizeInBits() == 64;
|
|
|
|
PPCTargetStreamer *TS =
|
|
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
|
|
if (!TOC.empty()) {
|
|
const char *Name = isPPC64 ? ".toc" : ".got2";
|
|
MCSectionELF *Section = OutContext.getELFSection(
|
|
Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
|
|
OutStreamer->SwitchSection(Section);
|
|
if (!isPPC64)
|
|
OutStreamer->emitValueToAlignment(4);
|
|
|
|
for (const auto &TOCMapPair : TOC) {
|
|
const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
|
|
MCSymbol *const TOCEntryLabel = TOCMapPair.second;
|
|
|
|
OutStreamer->emitLabel(TOCEntryLabel);
|
|
if (isPPC64 && TS != nullptr)
|
|
TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
|
|
else
|
|
OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
|
|
}
|
|
}
|
|
|
|
PPCAsmPrinter::emitEndOfAsmFile(M);
|
|
}
|
|
|
|
/// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
|
|
void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
|
|
// In the ELFv2 ABI, in functions that use the TOC register, we need to
|
|
// provide two entry points. The ABI guarantees that when calling the
|
|
// local entry point, r2 is set up by the caller to contain the TOC base
|
|
// for this function, and when calling the global entry point, r12 is set
|
|
// up by the caller to hold the address of the global entry point. We
|
|
// thus emit a prefix sequence along the following lines:
|
|
//
|
|
// func:
|
|
// .Lfunc_gepNN:
|
|
// # global entry point
|
|
// addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
|
|
// addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
|
|
// .Lfunc_lepNN:
|
|
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
|
|
// # local entry point, followed by function body
|
|
//
|
|
// For the Large code model, we create
|
|
//
|
|
// .Lfunc_tocNN:
|
|
// .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
|
|
// func:
|
|
// .Lfunc_gepNN:
|
|
// # global entry point
|
|
// ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
|
|
// add r2,r2,r12
|
|
// .Lfunc_lepNN:
|
|
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
|
|
// # local entry point, followed by function body
|
|
//
|
|
// This ensures we have r2 set up correctly while executing the function
|
|
// body, no matter which entry point is called.
|
|
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
|
|
const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
|
|
!MF->getRegInfo().use_empty(PPC::R2);
|
|
const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
|
|
UsesX2OrR2 && PPCFI->usesTOCBasePtr();
|
|
const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
|
|
Subtarget->isELFv2ABI() && UsesX2OrR2;
|
|
|
|
// Only do all that if the function uses R2 as the TOC pointer
|
|
// in the first place. We don't need the global entry point if the
|
|
// function uses R2 as an allocatable register.
|
|
if (NonPCrelGEPRequired || PCrelGEPRequired) {
|
|
// Note: The logic here must be synchronized with the code in the
|
|
// branch-selection pass which sets the offset of the first block in the
|
|
// function. This matters because it affects the alignment.
|
|
MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
|
|
OutStreamer->emitLabel(GlobalEntryLabel);
|
|
const MCSymbolRefExpr *GlobalEntryLabelExp =
|
|
MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
|
|
|
|
if (TM.getCodeModel() != CodeModel::Large) {
|
|
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
|
|
const MCExpr *TOCDeltaExpr =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
|
|
GlobalEntryLabelExp, OutContext);
|
|
|
|
const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
|
|
.addReg(PPC::X2)
|
|
.addReg(PPC::X12)
|
|
.addExpr(TOCDeltaHi));
|
|
|
|
const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
|
|
.addReg(PPC::X2)
|
|
.addReg(PPC::X2)
|
|
.addExpr(TOCDeltaLo));
|
|
} else {
|
|
MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
|
|
const MCExpr *TOCOffsetDeltaExpr =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
|
|
GlobalEntryLabelExp, OutContext);
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
|
|
.addReg(PPC::X2)
|
|
.addExpr(TOCOffsetDeltaExpr)
|
|
.addReg(PPC::X12));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
|
|
.addReg(PPC::X2)
|
|
.addReg(PPC::X2)
|
|
.addReg(PPC::X12));
|
|
}
|
|
|
|
MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
|
|
OutStreamer->emitLabel(LocalEntryLabel);
|
|
const MCSymbolRefExpr *LocalEntryLabelExp =
|
|
MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
|
|
const MCExpr *LocalOffsetExp =
|
|
MCBinaryExpr::createSub(LocalEntryLabelExp,
|
|
GlobalEntryLabelExp, OutContext);
|
|
|
|
PPCTargetStreamer *TS =
|
|
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
|
|
if (TS)
|
|
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
|
|
} else if (Subtarget->isUsingPCRelativeCalls()) {
|
|
// When generating the entry point for a function we have a few scenarios
|
|
// based on whether or not that function uses R2 and whether or not that
|
|
// function makes calls (or is a leaf function).
|
|
// 1) A leaf function that does not use R2 (or treats it as callee-saved
|
|
// and preserves it). In this case st_other=0 and both
|
|
// the local and global entry points for the function are the same.
|
|
// No special entry point code is required.
|
|
// 2) A function uses the TOC pointer R2. This function may or may not have
|
|
// calls. In this case st_other=[2,6] and the global and local entry
|
|
// points are different. Code to correctly setup the TOC pointer in R2
|
|
// is put between the global and local entry points. This case is
|
|
// covered by the if statatement above.
|
|
// 3) A function does not use the TOC pointer R2 but does have calls.
|
|
// In this case st_other=1 since we do not know whether or not any
|
|
// of the callees clobber R2. This case is dealt with in this else if
|
|
// block. Tail calls are considered calls and the st_other should also
|
|
// be set to 1 in that case as well.
|
|
// 4) The function does not use the TOC pointer but R2 is used inside
|
|
// the function. In this case st_other=1 once again.
|
|
// 5) This function uses inline asm. We mark R2 as reserved if the function
|
|
// has inline asm as we have to assume that it may be used.
|
|
if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
|
|
MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
|
|
PPCTargetStreamer *TS =
|
|
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
if (TS)
|
|
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
|
|
MCConstantExpr::create(1, OutContext));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitFunctionBodyEnd - Print the traceback table before the .size
|
|
/// directive.
|
|
///
|
|
void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
|
|
// Only the 64-bit target requires a traceback table. For now,
|
|
// we only emit the word of zeroes that GDB requires to find
|
|
// the end of the function, and zeroes for the eight-byte
|
|
// mandatory fields.
|
|
// FIXME: We should fill in the eight-byte mandatory fields as described in
|
|
// the PPC64 ELF ABI (this is a low-priority item because GDB does not
|
|
// currently make use of these fields).
|
|
if (Subtarget->isPPC64()) {
|
|
OutStreamer->emitIntValue(0, 4/*size*/);
|
|
OutStreamer->emitIntValue(0, 8/*size*/);
|
|
}
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
|
|
MCSymbol *GVSym) const {
|
|
|
|
assert(MAI->hasVisibilityOnlyWithLinkage() &&
|
|
"AIX's linkage directives take a visibility setting.");
|
|
|
|
MCSymbolAttr LinkageAttr = MCSA_Invalid;
|
|
switch (GV->getLinkage()) {
|
|
case GlobalValue::ExternalLinkage:
|
|
LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
|
|
break;
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
case GlobalValue::WeakAnyLinkage:
|
|
case GlobalValue::WeakODRLinkage:
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
LinkageAttr = MCSA_Weak;
|
|
break;
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
LinkageAttr = MCSA_Extern;
|
|
break;
|
|
case GlobalValue::PrivateLinkage:
|
|
return;
|
|
case GlobalValue::InternalLinkage:
|
|
assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
|
|
"InternalLinkage should not have other visibility setting.");
|
|
LinkageAttr = MCSA_LGlobal;
|
|
break;
|
|
case GlobalValue::AppendingLinkage:
|
|
llvm_unreachable("Should never emit this");
|
|
case GlobalValue::CommonLinkage:
|
|
llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
|
|
}
|
|
|
|
assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
|
|
|
|
MCSymbolAttr VisibilityAttr = MCSA_Invalid;
|
|
if (!TM.getIgnoreXCOFFVisibility()) {
|
|
switch (GV->getVisibility()) {
|
|
|
|
// TODO: "exported" and "internal" Visibility needs to go here.
|
|
case GlobalValue::DefaultVisibility:
|
|
break;
|
|
case GlobalValue::HiddenVisibility:
|
|
VisibilityAttr = MAI->getHiddenVisibilityAttr();
|
|
break;
|
|
case GlobalValue::ProtectedVisibility:
|
|
VisibilityAttr = MAI->getProtectedVisibilityAttr();
|
|
break;
|
|
}
|
|
}
|
|
|
|
OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
|
|
VisibilityAttr);
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
|
|
// Setup CurrentFnDescSym and its containing csect.
|
|
MCSectionXCOFF *FnDescSec =
|
|
cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
|
|
&MF.getFunction(), TM));
|
|
FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
|
|
|
|
CurrentFnDescSym = FnDescSec->getQualNameSymbol();
|
|
|
|
return AsmPrinter::SetupMachineFunction(MF);
|
|
}
|
|
|
|
uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
|
|
// Calculate the number of VRs be saved.
|
|
// Vector registers 20 through 31 are marked as reserved and cannot be used
|
|
// in the default ABI.
|
|
const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
|
|
if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
|
|
TM.getAIXExtendedAltivecABI()) {
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
|
|
if (MRI.isPhysRegModified(Reg))
|
|
// Number of VRs saved.
|
|
return PPC::V31 - Reg + 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
|
|
|
|
if (!TM.getXCOFFTracebackTable())
|
|
return;
|
|
|
|
emitTracebackTable();
|
|
|
|
// If ShouldEmitEHBlock returns true, then the eh info table
|
|
// will be emitted via `AIXException::endFunction`. Otherwise, we
|
|
// need to emit a dumy eh info table when VRs are saved. We could not
|
|
// consolidate these two places into one because there is no easy way
|
|
// to access register information in `AIXException` class.
|
|
if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
|
|
(getNumberOfVRSaved() > 0)) {
|
|
// Emit dummy EH Info Table.
|
|
OutStreamer->SwitchSection(getObjFileLowering().getCompactUnwindSection());
|
|
MCSymbol *EHInfoLabel =
|
|
TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
|
|
OutStreamer->emitLabel(EHInfoLabel);
|
|
|
|
// Version number.
|
|
OutStreamer->emitInt32(0);
|
|
|
|
const DataLayout &DL = MMI->getModule()->getDataLayout();
|
|
const unsigned PointerSize = DL.getPointerSize();
|
|
// Add necessary paddings in 64 bit mode.
|
|
OutStreamer->emitValueToAlignment(PointerSize);
|
|
|
|
OutStreamer->emitIntValue(0, PointerSize);
|
|
OutStreamer->emitIntValue(0, PointerSize);
|
|
OutStreamer->SwitchSection(MF->getSection());
|
|
}
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitTracebackTable() {
|
|
|
|
// Create a symbol for the end of function.
|
|
MCSymbol *FuncEnd = createTempSymbol(MF->getName());
|
|
OutStreamer->emitLabel(FuncEnd);
|
|
|
|
OutStreamer->AddComment("Traceback table begin");
|
|
// Begin with a fullword of zero.
|
|
OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
|
|
|
|
SmallString<128> CommentString;
|
|
raw_svector_ostream CommentOS(CommentString);
|
|
|
|
auto EmitComment = [&]() {
|
|
OutStreamer->AddComment(CommentOS.str());
|
|
CommentString.clear();
|
|
};
|
|
|
|
auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding(Value, Size);
|
|
};
|
|
|
|
unsigned int Version = 0;
|
|
CommentOS << "Version = " << Version;
|
|
EmitCommentAndValue(Version, 1);
|
|
|
|
// There is a lack of information in the IR to assist with determining the
|
|
// source language. AIX exception handling mechanism would only search for
|
|
// personality routine and LSDA area when such language supports exception
|
|
// handling. So to be conservatively correct and allow runtime to do its job,
|
|
// we need to set it to C++ for now.
|
|
TracebackTable::LanguageID LanguageIdentifier =
|
|
TracebackTable::CPlusPlus; // C++
|
|
|
|
CommentOS << "Language = "
|
|
<< getNameForTracebackTableLanguageId(LanguageIdentifier);
|
|
EmitCommentAndValue(LanguageIdentifier, 1);
|
|
|
|
// This is only populated for the third and fourth bytes.
|
|
uint32_t FirstHalfOfMandatoryField = 0;
|
|
|
|
// Emit the 3rd byte of the mandatory field.
|
|
|
|
// We always set traceback offset bit to true.
|
|
FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
|
|
|
|
const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
// Check the function uses floating-point processor instructions or not
|
|
for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
|
|
if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
|
|
FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define GENBOOLCOMMENT(Prefix, V, Field) \
|
|
CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \
|
|
<< #Field
|
|
|
|
#define GENVALUECOMMENT(PrefixAndName, V, Field) \
|
|
CommentOS << (PrefixAndName) << " = " \
|
|
<< static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \
|
|
(TracebackTable::Field##Shift))
|
|
|
|
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
|
|
EmitComment();
|
|
|
|
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
|
|
EmitComment();
|
|
|
|
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
|
|
EmitComment();
|
|
|
|
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
|
|
EmitComment();
|
|
GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
|
|
IsFloatingPointOperationLogOrAbortEnabled);
|
|
EmitComment();
|
|
|
|
OutStreamer->emitIntValueInHexWithPadding(
|
|
(FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
|
|
|
|
// Set the 4th byte of the mandatory field.
|
|
FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
|
|
|
|
static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!");
|
|
if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31,
|
|
/* SkipRegMaskTest */ true))
|
|
FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
|
|
|
|
const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
|
|
if (!MustSaveCRs.empty())
|
|
FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
|
|
|
|
if (FI->mustSaveLR())
|
|
FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
|
|
|
|
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
|
|
EmitComment();
|
|
GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
|
|
OnConditionDirective);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
|
|
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
|
|
1);
|
|
|
|
// Set the 5th byte of mandatory field.
|
|
uint32_t SecondHalfOfMandatoryField = 0;
|
|
|
|
// Always store back chain.
|
|
SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask;
|
|
|
|
uint32_t FPRSaved = 0;
|
|
for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
|
|
if (MRI.isPhysRegModified(Reg)) {
|
|
FPRSaved = PPC::F31 - Reg + 1;
|
|
break;
|
|
}
|
|
}
|
|
SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
|
|
TracebackTable::FPRSavedMask;
|
|
GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
|
|
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
|
|
GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding(
|
|
(SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
|
|
|
|
// Set the 6th byte of mandatory field.
|
|
|
|
// Check whether has Vector Instruction,We only treat instructions uses vector
|
|
// register as vector instructions.
|
|
bool HasVectorInst = false;
|
|
for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
|
|
if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
|
|
// Has VMX instruction.
|
|
HasVectorInst = true;
|
|
break;
|
|
}
|
|
|
|
if (FI->hasVectorParms() || HasVectorInst)
|
|
SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
|
|
|
|
uint16_t NumOfVRSaved = getNumberOfVRSaved();
|
|
bool ShouldEmitEHBlock =
|
|
TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
|
|
|
|
if (ShouldEmitEHBlock)
|
|
SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
|
|
|
|
uint32_t GPRSaved = 0;
|
|
|
|
// X13 is reserved under 64-bit environment.
|
|
unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
|
|
unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
|
|
|
|
for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
|
|
if (MRI.isPhysRegModified(Reg)) {
|
|
GPRSaved = GPREnd - Reg + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
|
|
TracebackTable::GPRSavedMask;
|
|
|
|
GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
|
|
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
|
|
GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding(
|
|
(SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
|
|
|
|
// Set the 7th byte of mandatory field.
|
|
uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
|
|
SecondHalfOfMandatoryField |=
|
|
(NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
|
|
TracebackTable::NumberOfFixedParmsMask;
|
|
GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
|
|
NumberOfFixedParms);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding(
|
|
(SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
|
|
|
|
// Set the 8th byte of mandatory field.
|
|
|
|
// Always set parameter on stack.
|
|
SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
|
|
|
|
uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
|
|
SecondHalfOfMandatoryField |=
|
|
(NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
|
|
TracebackTable::NumberOfFloatingPointParmsMask;
|
|
|
|
GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
|
|
NumberOfFloatingPointParms);
|
|
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
|
|
1);
|
|
|
|
// Generate the optional fields of traceback table.
|
|
|
|
// Parameter type.
|
|
if (NumberOfFixedParms || NumberOfFPParms) {
|
|
uint32_t ParmsTypeValue = FI->getParmsType();
|
|
|
|
Expected<SmallString<32>> ParmsType =
|
|
FI->hasVectorParms()
|
|
? XCOFF::parseParmsTypeWithVecInfo(
|
|
ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
|
|
FI->getVectorParmsNum())
|
|
: XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
|
|
NumberOfFPParms);
|
|
|
|
assert(ParmsType && toString(ParmsType.takeError()).c_str());
|
|
if (ParmsType) {
|
|
CommentOS << "Parameter type = " << ParmsType.get();
|
|
EmitComment();
|
|
}
|
|
OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
|
|
sizeof(ParmsTypeValue));
|
|
}
|
|
// Traceback table offset.
|
|
OutStreamer->AddComment("Function size");
|
|
if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
|
|
MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
|
|
&(MF->getFunction()), TM);
|
|
OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
|
|
}
|
|
|
|
// Since we unset the Int_Handler.
|
|
if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
|
|
report_fatal_error("Hand_Mask not implement yet");
|
|
|
|
if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
|
|
report_fatal_error("Ctl_Info not implement yet");
|
|
|
|
if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
|
|
StringRef Name = MF->getName().substr(0, INT16_MAX);
|
|
int16_t NameLength = Name.size();
|
|
CommentOS << "Function name len = "
|
|
<< static_cast<unsigned int>(NameLength);
|
|
EmitCommentAndValue(NameLength, 2);
|
|
OutStreamer->AddComment("Function Name");
|
|
OutStreamer->emitBytes(Name);
|
|
}
|
|
|
|
if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
|
|
uint8_t AllocReg = XCOFF::AllocRegNo;
|
|
OutStreamer->AddComment("AllocaUsed");
|
|
OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
|
|
}
|
|
|
|
if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
|
|
uint16_t VRData = 0;
|
|
if (NumOfVRSaved) {
|
|
// Number of VRs saved.
|
|
VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
|
|
TracebackTable::NumberOfVRSavedMask;
|
|
// This bit is supposed to set only when the special register
|
|
// VRSAVE is saved on stack.
|
|
// However, IBM XL compiler sets the bit when any vector registers
|
|
// are saved on the stack. We will follow XL's behavior on AIX
|
|
// so that we don't get surprise behavior change for C code.
|
|
VRData |= TracebackTable::IsVRSavedOnStackMask;
|
|
}
|
|
|
|
// Set has_varargs.
|
|
if (FI->getVarArgsFrameIndex())
|
|
VRData |= TracebackTable::HasVarArgsMask;
|
|
|
|
// Vector parameters number.
|
|
unsigned VectorParmsNum = FI->getVectorParmsNum();
|
|
VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
|
|
TracebackTable::NumberOfVectorParmsMask;
|
|
|
|
if (HasVectorInst)
|
|
VRData |= TracebackTable::HasVMXInstructionMask;
|
|
|
|
GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
|
|
GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
|
|
GENBOOLCOMMENT(", ", VRData, HasVarArgs);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
|
|
|
|
GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
|
|
GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
|
|
EmitComment();
|
|
OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
|
|
|
|
uint32_t VecParmTypeValue = FI->getVecExtParmsType();
|
|
|
|
Expected<SmallString<32>> VecParmsType =
|
|
XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
|
|
assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
|
|
if (VecParmsType) {
|
|
CommentOS << "Vector Parameter type = " << VecParmsType.get();
|
|
EmitComment();
|
|
}
|
|
OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
|
|
sizeof(VecParmTypeValue));
|
|
// Padding 2 bytes.
|
|
CommentOS << "Padding";
|
|
EmitCommentAndValue(0, 2);
|
|
}
|
|
|
|
uint8_t ExtensionTableFlag = 0;
|
|
if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
|
|
if (ShouldEmitEHBlock)
|
|
ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
|
|
if (EnableSSPCanaryBitInTB &&
|
|
TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
|
|
ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
|
|
|
|
CommentOS << "ExtensionTableFlag = "
|
|
<< getExtendedTBTableFlagString(ExtensionTableFlag);
|
|
EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
|
|
}
|
|
|
|
if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
|
|
auto &Ctx = OutStreamer->getContext();
|
|
MCSymbol *EHInfoSym =
|
|
TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
|
|
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym);
|
|
const MCSymbol *TOCBaseSym =
|
|
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
|
|
->getQualNameSymbol();
|
|
const MCExpr *Exp =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
|
|
MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
|
|
|
|
const DataLayout &DL = getDataLayout();
|
|
OutStreamer->emitValueToAlignment(4);
|
|
OutStreamer->AddComment("EHInfo Table");
|
|
OutStreamer->emitValue(Exp, DL.getPointerSize());
|
|
}
|
|
#undef GENBOOLCOMMENT
|
|
#undef GENVALUECOMMENT
|
|
}
|
|
|
|
static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
|
|
return GV->hasAppendingLinkage() &&
|
|
StringSwitch<bool>(GV->getName())
|
|
// TODO: Linker could still eliminate the GV if we just skip
|
|
// handling llvm.used array. Skipping them for now until we or the
|
|
// AIX OS team come up with a good solution.
|
|
.Case("llvm.used", true)
|
|
// It's correct to just skip llvm.compiler.used array here.
|
|
.Case("llvm.compiler.used", true)
|
|
.Default(false);
|
|
}
|
|
|
|
static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
|
|
return StringSwitch<bool>(GV->getName())
|
|
.Cases("llvm.global_ctors", "llvm.global_dtors", true)
|
|
.Default(false);
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
|
|
// Special LLVM global arrays have been handled at the initialization.
|
|
if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
|
|
return;
|
|
|
|
// If the Global Variable has the toc-data attribute, it needs to be emitted
|
|
// when we emit the .toc section.
|
|
if (GV->hasAttribute("toc-data")) {
|
|
TOCDataGlobalVars.push_back(GV);
|
|
return;
|
|
}
|
|
|
|
emitGlobalVariableHelper(GV);
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
|
|
assert(!GV->getName().startswith("llvm.") &&
|
|
"Unhandled intrinsic global variable.");
|
|
|
|
if (GV->hasComdat())
|
|
report_fatal_error("COMDAT not yet supported by AIX.");
|
|
|
|
MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
|
|
|
|
if (GV->isDeclarationForLinker()) {
|
|
emitLinkage(GV, GVSym);
|
|
return;
|
|
}
|
|
|
|
SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
|
|
if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
|
|
!GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
|
|
report_fatal_error("Encountered a global variable kind that is "
|
|
"not supported yet.");
|
|
|
|
// Print GV in verbose mode
|
|
if (isVerbose()) {
|
|
if (GV->hasInitializer()) {
|
|
GV->printAsOperand(OutStreamer->GetCommentOS(),
|
|
/*PrintType=*/false, GV->getParent());
|
|
OutStreamer->GetCommentOS() << '\n';
|
|
}
|
|
}
|
|
|
|
MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
|
|
getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
|
|
|
|
// Switch to the containing csect.
|
|
OutStreamer->SwitchSection(Csect);
|
|
|
|
const DataLayout &DL = GV->getParent()->getDataLayout();
|
|
|
|
// Handle common and zero-initialized local symbols.
|
|
if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
|
|
GVKind.isThreadBSSLocal()) {
|
|
Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV));
|
|
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
|
|
GVSym->setStorageClass(
|
|
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
|
|
|
|
if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal())
|
|
OutStreamer->emitXCOFFLocalCommonSymbol(
|
|
OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
|
|
GVSym, Alignment.value());
|
|
else
|
|
OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value());
|
|
return;
|
|
}
|
|
|
|
MCSymbol *EmittedInitSym = GVSym;
|
|
emitLinkage(GV, EmittedInitSym);
|
|
emitAlignment(getGVAlignment(GV, DL), GV);
|
|
|
|
// When -fdata-sections is enabled, every GlobalVariable will
|
|
// be put into its own csect; therefore, label is not necessary here.
|
|
if (!TM.getDataSections() || GV->hasSection()) {
|
|
OutStreamer->emitLabel(EmittedInitSym);
|
|
}
|
|
|
|
// Emit aliasing label for global variable.
|
|
llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) {
|
|
OutStreamer->emitLabel(getSymbol(Alias));
|
|
});
|
|
|
|
emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitFunctionDescriptor() {
|
|
const DataLayout &DL = getDataLayout();
|
|
const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
|
|
|
|
MCSectionSubPair Current = OutStreamer->getCurrentSection();
|
|
// Emit function descriptor.
|
|
OutStreamer->SwitchSection(
|
|
cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
|
|
|
|
// Emit aliasing label for function descriptor csect.
|
|
llvm::for_each(GOAliasMap[&MF->getFunction()],
|
|
[this](const GlobalAlias *Alias) {
|
|
OutStreamer->emitLabel(getSymbol(Alias));
|
|
});
|
|
|
|
// Emit function entry point address.
|
|
OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
|
|
PointerSize);
|
|
// Emit TOC base address.
|
|
const MCSymbol *TOCBaseSym =
|
|
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
|
|
->getQualNameSymbol();
|
|
OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
|
|
PointerSize);
|
|
// Emit a null environment pointer.
|
|
OutStreamer->emitIntValue(0, PointerSize);
|
|
|
|
OutStreamer->SwitchSection(Current.first, Current.second);
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
|
|
// It's not necessary to emit the label when we have individual
|
|
// function in its own csect.
|
|
if (!TM.getFunctionSections())
|
|
PPCAsmPrinter::emitFunctionEntryLabel();
|
|
|
|
// Emit aliasing label for function entry point label.
|
|
llvm::for_each(
|
|
GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) {
|
|
OutStreamer->emitLabel(
|
|
getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
|
|
});
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
|
|
// If there are no functions and there are no toc-data definitions in this
|
|
// module, we will never need to reference the TOC base.
|
|
if (M.empty() && TOCDataGlobalVars.empty())
|
|
return;
|
|
|
|
// Switch to section to emit TOC base.
|
|
OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection());
|
|
|
|
PPCTargetStreamer *TS =
|
|
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
|
|
for (auto &I : TOC) {
|
|
MCSectionXCOFF *TCEntry;
|
|
// Setup the csect for the current TC entry. If the variant kind is
|
|
// VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
|
|
// new symbol to prefix the name with a dot.
|
|
if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) {
|
|
SmallString<128> Name;
|
|
StringRef Prefix = ".";
|
|
Name += Prefix;
|
|
Name += I.first.first->getName();
|
|
MCSymbol *S = OutContext.getOrCreateSymbol(Name);
|
|
TCEntry = cast<MCSectionXCOFF>(
|
|
getObjFileLowering().getSectionForTOCEntry(S, TM));
|
|
} else {
|
|
TCEntry = cast<MCSectionXCOFF>(
|
|
getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
|
|
}
|
|
OutStreamer->SwitchSection(TCEntry);
|
|
|
|
OutStreamer->emitLabel(I.second);
|
|
if (TS != nullptr)
|
|
TS->emitTCEntry(*I.first.first, I.first.second);
|
|
}
|
|
|
|
for (const auto *GV : TOCDataGlobalVars)
|
|
emitGlobalVariableHelper(GV);
|
|
}
|
|
|
|
bool PPCAIXAsmPrinter::doInitialization(Module &M) {
|
|
const bool Result = PPCAsmPrinter::doInitialization(M);
|
|
|
|
auto setCsectAlignment = [this](const GlobalObject *GO) {
|
|
// Declarations have 0 alignment which is set by default.
|
|
if (GO->isDeclarationForLinker())
|
|
return;
|
|
|
|
SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
|
|
MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
|
|
getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
|
|
|
|
Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout());
|
|
if (GOAlign > Csect->getAlignment())
|
|
Csect->setAlignment(GOAlign);
|
|
};
|
|
|
|
// We need to know, up front, the alignment of csects for the assembly path,
|
|
// because once a .csect directive gets emitted, we could not change the
|
|
// alignment value on it.
|
|
for (const auto &G : M.globals()) {
|
|
if (isSpecialLLVMGlobalArrayToSkip(&G))
|
|
continue;
|
|
|
|
if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
|
|
// Generate a format indicator and a unique module id to be a part of
|
|
// the sinit and sterm function names.
|
|
if (FormatIndicatorAndUniqueModId.empty()) {
|
|
std::string UniqueModuleId = getUniqueModuleId(&M);
|
|
if (UniqueModuleId != "")
|
|
// TODO: Use source file full path to generate the unique module id
|
|
// and add a format indicator as a part of function name in case we
|
|
// will support more than one format.
|
|
FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
|
|
else
|
|
// Use the Pid and current time as the unique module id when we cannot
|
|
// generate one based on a module's strong external symbols.
|
|
// FIXME: Adjust the comment accordingly after we use source file full
|
|
// path instead.
|
|
FormatIndicatorAndUniqueModId =
|
|
"clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) +
|
|
"_" + llvm::itostr(time(nullptr));
|
|
}
|
|
|
|
emitSpecialLLVMGlobal(&G);
|
|
continue;
|
|
}
|
|
|
|
setCsectAlignment(&G);
|
|
}
|
|
|
|
for (const auto &F : M)
|
|
setCsectAlignment(&F);
|
|
|
|
// Construct an aliasing list for each GlobalObject.
|
|
for (const auto &Alias : M.aliases()) {
|
|
const GlobalObject *Base = Alias.getBaseObject();
|
|
if (!Base)
|
|
report_fatal_error(
|
|
"alias without a base object is not yet supported on AIX");
|
|
GOAliasMap[Base].push_back(&Alias);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case PPC::GETtlsADDR64AIX:
|
|
case PPC::GETtlsADDR32AIX: {
|
|
// The reference to .__tls_get_addr is unknown to the assembler
|
|
// so we need to emit an external symbol reference.
|
|
MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
|
|
ExtSymSDNodeSymbols.insert(TlsGetAddr);
|
|
break;
|
|
}
|
|
case PPC::BL8:
|
|
case PPC::BL:
|
|
case PPC::BL8_NOP:
|
|
case PPC::BL_NOP: {
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
if (MO.isSymbol()) {
|
|
MCSymbolXCOFF *S =
|
|
cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
|
|
ExtSymSDNodeSymbols.insert(S);
|
|
}
|
|
} break;
|
|
case PPC::BL_TLS:
|
|
case PPC::BL8_TLS:
|
|
case PPC::BL8_TLS_:
|
|
case PPC::BL8_NOP_TLS:
|
|
report_fatal_error("TLS call not yet implemented");
|
|
case PPC::TAILB:
|
|
case PPC::TAILB8:
|
|
case PPC::TAILBA:
|
|
case PPC::TAILBA8:
|
|
case PPC::TAILBCTR:
|
|
case PPC::TAILBCTR8:
|
|
if (MI->getOperand(0).isSymbol())
|
|
report_fatal_error("Tail call for extern symbol not yet supported.");
|
|
break;
|
|
case PPC::DST:
|
|
case PPC::DST64:
|
|
case PPC::DSTT:
|
|
case PPC::DSTT64:
|
|
case PPC::DSTST:
|
|
case PPC::DSTST64:
|
|
case PPC::DSTSTT:
|
|
case PPC::DSTSTT64:
|
|
EmitToStreamer(
|
|
*OutStreamer,
|
|
MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
|
|
return;
|
|
}
|
|
return PPCAsmPrinter::emitInstruction(MI);
|
|
}
|
|
|
|
bool PPCAIXAsmPrinter::doFinalization(Module &M) {
|
|
// Do streamer related finalization for DWARF.
|
|
if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo())
|
|
OutStreamer->doFinalizationAtSectionEnd(
|
|
OutStreamer->getContext().getObjectFileInfo()->getTextSection());
|
|
|
|
for (MCSymbol *Sym : ExtSymSDNodeSymbols)
|
|
OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
|
|
return PPCAsmPrinter::doFinalization(M);
|
|
}
|
|
|
|
static unsigned mapToSinitPriority(int P) {
|
|
if (P < 0 || P > 65535)
|
|
report_fatal_error("invalid init priority");
|
|
|
|
if (P <= 20)
|
|
return P;
|
|
|
|
if (P < 81)
|
|
return 20 + (P - 20) * 16;
|
|
|
|
if (P <= 1124)
|
|
return 1004 + (P - 81);
|
|
|
|
if (P < 64512)
|
|
return 2047 + (P - 1124) * 33878;
|
|
|
|
return 2147482625u + (P - 64512);
|
|
}
|
|
|
|
static std::string convertToSinitPriority(int Priority) {
|
|
// This helper function converts clang init priority to values used in sinit
|
|
// and sterm functions.
|
|
//
|
|
// The conversion strategies are:
|
|
// We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
|
|
// reserved priority range [0, 1023] by
|
|
// - directly mapping the first 21 and the last 20 elements of the ranges
|
|
// - linear interpolating the intermediate values with a step size of 16.
|
|
//
|
|
// We map the non reserved clang/gnu priority range of [101, 65535] into the
|
|
// sinit/sterm priority range [1024, 2147483648] by:
|
|
// - directly mapping the first and the last 1024 elements of the ranges
|
|
// - linear interpolating the intermediate values with a step size of 33878.
|
|
unsigned int P = mapToSinitPriority(Priority);
|
|
|
|
std::string PrioritySuffix;
|
|
llvm::raw_string_ostream os(PrioritySuffix);
|
|
os << llvm::format_hex_no_prefix(P, 8);
|
|
os.flush();
|
|
return PrioritySuffix;
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
|
|
const Constant *List, bool IsCtor) {
|
|
SmallVector<Structor, 8> Structors;
|
|
preprocessXXStructorList(DL, List, Structors);
|
|
if (Structors.empty())
|
|
return;
|
|
|
|
unsigned Index = 0;
|
|
for (Structor &S : Structors) {
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
|
|
S.Func = CE->getOperand(0);
|
|
|
|
llvm::GlobalAlias::create(
|
|
GlobalValue::ExternalLinkage,
|
|
(IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
|
|
llvm::Twine(convertToSinitPriority(S.Priority)) +
|
|
llvm::Twine("_", FormatIndicatorAndUniqueModId) +
|
|
llvm::Twine("_", llvm::utostr(Index++)),
|
|
cast<Function>(S.Func));
|
|
}
|
|
}
|
|
|
|
void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
|
|
unsigned Encoding) {
|
|
if (GV) {
|
|
MCSymbol *TypeInfoSym = TM.getSymbol(GV);
|
|
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym);
|
|
const MCSymbol *TOCBaseSym =
|
|
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
|
|
->getQualNameSymbol();
|
|
auto &Ctx = OutStreamer->getContext();
|
|
const MCExpr *Exp =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
|
|
MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
|
|
OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
|
|
} else
|
|
OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
|
|
}
|
|
|
|
// Return a pass that prints the PPC assembly code for a MachineFunction to the
|
|
// given output stream.
|
|
static AsmPrinter *
|
|
createPPCAsmPrinterPass(TargetMachine &tm,
|
|
std::unique_ptr<MCStreamer> &&Streamer) {
|
|
if (tm.getTargetTriple().isOSAIX())
|
|
return new PPCAIXAsmPrinter(tm, std::move(Streamer));
|
|
|
|
return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
|
|
TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
|
|
createPPCAsmPrinterPass);
|
|
TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
|
|
createPPCAsmPrinterPass);
|
|
TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
|
|
createPPCAsmPrinterPass);
|
|
TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
|
|
createPPCAsmPrinterPass);
|
|
}
|