llvm/lib/CodeGen/MachineFunction.cpp

863 lines
31 KiB
C++
Raw Normal View History

//===-- MachineFunction.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function. This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// MachineFunction implementation
//===----------------------------------------------------------------------===//
// Out of line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() {}
void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
}
MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
unsigned FunctionNum, MachineModuleInfo &mmi,
GCModuleInfo* gmi)
: Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) {
if (TM.getRegisterInfo())
RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo());
else
RegInfo = 0;
MFInfo = 0;
FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(),
TM.Options.RealignStack);
if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackAlignment))
FrameInfo->ensureMaxAlignment(Fn->getAttributes().
getStackAlignment(AttributeSet::FunctionIndex));
ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout());
Alignment = TM.getTargetLowering()->getMinFunctionAlignment();
// FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize))
Alignment = std::max(Alignment,
TM.getTargetLowering()->getPrefFunctionAlignment());
FunctionNumber = FunctionNum;
JumpTableInfo = 0;
}
MachineFunction::~MachineFunction() {
// Don't call destructors on MachineInstr and MachineOperand. All of their
// memory comes from the BumpPtrAllocator which is about to be purged.
//
// Do call MachineBasicBlock destructors, it contains std::vectors.
for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
I->Insts.clearAndLeakNodesUnsafely();
InstructionRecycler.clear(Allocator);
OperandRecycler.clear(Allocator);
BasicBlockRecycler.clear(Allocator);
if (RegInfo) {
RegInfo->~MachineRegisterInfo();
Allocator.Deallocate(RegInfo);
}
if (MFInfo) {
MFInfo->~MachineFunctionInfo();
Allocator.Deallocate(MFInfo);
}
FrameInfo->~MachineFrameInfo();
Allocator.Deallocate(FrameInfo);
ConstantPool->~MachineConstantPool();
Allocator.Deallocate(ConstantPool);
if (JumpTableInfo) {
JumpTableInfo->~MachineJumpTableInfo();
Allocator.Deallocate(JumpTableInfo);
}
}
/// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
/// does already exist, allocate one.
MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind) {
if (JumpTableInfo) return JumpTableInfo;
JumpTableInfo = new (Allocator)
MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
return JumpTableInfo;
}
/// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
/// recomputes them. This guarantees that the MBB numbers are sequential,
/// dense, and match the ordering of the blocks within the function. If a
/// specific MachineBasicBlock is specified, only that block and those after
/// it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
if (empty()) { MBBNumbering.clear(); return; }
MachineFunction::iterator MBBI, E = end();
if (MBB == 0)
MBBI = begin();
else
MBBI = MBB;
// Figure out the block number this should have.
unsigned BlockNo = 0;
if (MBBI != begin())
BlockNo = prior(MBBI)->getNumber()+1;
for (; MBBI != E; ++MBBI, ++BlockNo) {
if (MBBI->getNumber() != (int)BlockNo) {
// Remove use of the old number.
if (MBBI->getNumber() != -1) {
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
"MBB number mismatch!");
MBBNumbering[MBBI->getNumber()] = 0;
}
// If BlockNo is already taken, set that block's number to -1.
if (MBBNumbering[BlockNo])
MBBNumbering[BlockNo]->setNumber(-1);
MBBNumbering[BlockNo] = MBBI;
MBBI->setNumber(BlockNo);
}
}
// Okay, all the blocks are renumbered. If we have compactified the block
// numbering, shrink MBBNumbering now.
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
MBBNumbering.resize(BlockNo);
}
/// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
/// of `new MachineInstr'.
///
MachineInstr *
MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
DebugLoc DL, bool NoImp) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, MCID, DL, NoImp);
}
/// CloneMachineInstr - Create a new MachineInstr which is a copy of the
/// 'Orig' instruction, identical in all ways except the instruction
/// has no parent, prev, or next.
///
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, *Orig);
}
/// DeleteMachineInstr - Delete the given MachineInstr.
///
/// This function also serves as the MachineInstr destructor - the real
/// ~MachineInstr() destructor must be empty.
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
// Strip it for parts. The operand array and the MI object itself are
// independently recyclable.
if (MI->Operands)
deallocateOperandArray(MI->CapOperands, MI->Operands);
// Don't call ~MachineInstr() which must be trivial anyway because
// ~MachineFunction drops whole lists of MachineInstrs wihout calling their
// destructors.
InstructionRecycler.Deallocate(Allocator, MI);
}
/// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
/// instead of `new MachineBasicBlock'.
///
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
MachineBasicBlock(*this, bb);
}
/// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
///
void
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
assert(MBB->getParent() == this && "MBB parent mismatch!");
MBB->~MachineBasicBlock();
BasicBlockRecycler.Deallocate(Allocator, MBB);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f,
uint64_t s, unsigned base_alignment,
const MDNode *TBAAInfo,
const MDNode *Ranges) {
return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment,
TBAAInfo, Ranges);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, uint64_t Size) {
return new (Allocator)
MachineMemOperand(MachinePointerInfo(MMO->getValue(),
MMO->getOffset()+Offset),
MMO->getFlags(), Size,
MMO->getBaseAlignment(), 0);
}
MachineInstr::mmo_iterator
MachineFunction::allocateMemRefsArray(unsigned long Num) {
return Allocator.Allocate<MachineMemOperand *>(Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isLoad())
++Num;
// Allocate a new array and populate it with the load information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isLoad()) {
if (!(*I)->isStore())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the store flag.
MachineMemOperand *JustLoad =
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOStore,
(*I)->getSize(), (*I)->getBaseAlignment(),
(*I)->getTBAAInfo());
Result[Index] = JustLoad;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isStore())
++Num;
// Allocate a new array and populate it with the store information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isStore()) {
if (!(*I)->isLoad())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the load flag.
MachineMemOperand *JustStore =
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOLoad,
(*I)->getSize(), (*I)->getBaseAlignment(),
(*I)->getTBAAInfo());
Result[Index] = JustStore;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineFunction::dump() const {
print(dbgs());
}
#endif
StringRef MachineFunction::getName() const {
assert(getFunction() && "No function!");
return getFunction()->getName();
}
void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const {
OS << "# Machine code for function " << getName() << ": ";
if (RegInfo) {
OS << (RegInfo->isSSA() ? "SSA" : "Post SSA");
if (!RegInfo->tracksLiveness())
OS << ", not tracking liveness";
}
OS << '\n';
// Print Frame Information
FrameInfo->print(*this, OS);
// Print JumpTable Information
if (JumpTableInfo)
JumpTableInfo->print(OS);
// Print Constant Pool
ConstantPool->print(OS);
const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
if (RegInfo && !RegInfo->livein_empty()) {
OS << "Function Live Ins: ";
for (MachineRegisterInfo::livein_iterator
I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
OS << PrintReg(I->first, TRI);
if (I->second)
OS << " in " << PrintReg(I->second, TRI);
if (llvm::next(I) != E)
OS << ", ";
}
OS << '\n';
}
for (const_iterator BB = begin(), E = end(); BB != E; ++BB) {
OS << '\n';
BB->print(OS, Indexes);
}
OS << "\n# End machine code for function " << getName() << ".\n\n";
}
namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const MachineFunction *F) {
return "CFG for '" + F->getName().str() + "' function";
}
std::string getNodeLabel(const MachineBasicBlock *Node,
const MachineFunction *Graph) {
std::string OutStr;
{
raw_string_ostream OSS(OutStr);
if (isSimple()) {
OSS << "BB#" << Node->getNumber();
if (const BasicBlock *BB = Node->getBasicBlock())
OSS << ": " << BB->getName();
} else
Node->print(OSS);
}
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
}
return OutStr;
}
};
}
void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getName());
#else
errs() << "MachineFunction::viewCFG is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getName(), true);
#else
errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
/// addLiveIn - Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
unsigned MachineFunction::addLiveIn(unsigned PReg,
const TargetRegisterClass *RC) {
MachineRegisterInfo &MRI = getRegInfo();
unsigned VReg = MRI.getLiveInVirtReg(PReg);
if (VReg) {
assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!");
return VReg;
}
VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(PReg, VReg);
return VReg;
}
/// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
/// normal 'L' label is returned.
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
bool isLinkerPrivate) const {
assert(JumpTableInfo && "No jump tables");
assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
const MCAsmInfo &MAI = *getTarget().getMCAsmInfo();
const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() :
MAI.getPrivateGlobalPrefix();
SmallString<60> Name;
raw_svector_ostream(Name)
<< Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
return Ctx.GetOrCreateSymbol(Name.str());
}
/// getPICBaseSymbol - Return a function-local symbol to represent the PIC
/// base.
MCSymbol *MachineFunction::getPICBaseSymbol() const {
const MCAsmInfo &MAI = *Target.getMCAsmInfo();
return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
Twine(getFunctionNumber())+"$pb");
}
//===----------------------------------------------------------------------===//
// MachineFrameInfo implementation
//===----------------------------------------------------------------------===//
/// ensureMaxAlignment - Make sure the function is at least Align bytes
/// aligned.
void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
if (!TFI.isStackRealignable() || !RealignOption)
assert(Align <= TFI.getStackAlignment() &&
"For targets without stack realignment, Align is out of limit!");
if (MaxAlignment < Align) MaxAlignment = Align;
}
/// clampStackAlignment - Clamp the alignment if requested and emit a warning.
static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned PrefAlign,
unsigned MinAlign, unsigned StackAlign,
const AllocaInst *Alloca = 0) {
if (!ShouldClamp || PrefAlign <= StackAlign)
return PrefAlign;
if (Alloca && MinAlign > StackAlign)
Alloca->getParent()->getContext().emitWarning(Alloca,
"Requested alignment exceeds the stack alignment!");
else
assert(MinAlign <= StackAlign &&
"Requested alignment exceeds the stack alignment!");
return StackAlign;
}
/// CreateStackObjectWithMinAlign - Create a new statically sized stack
/// object, returning a nonnegative identifier to represent it. This function
/// takes a preferred alignment and a minimal alignment.
///
int MachineFrameInfo::CreateStackObjectWithMinAlign(uint64_t Size,
unsigned PrefAlignment, unsigned MinAlignment,
bool isSS, bool MayNeedSP, const AllocaInst *Alloca) {
assert(Size != 0 && "Cannot allocate zero size stack objects!");
unsigned Alignment = clampStackAlignment(
!TFI.isStackRealignable() || !RealignOption,
PrefAlignment, MinAlignment,
TFI.getStackAlignment(), Alloca);
Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP,
Alloca));
int Index = (int)Objects.size() - NumFixedObjects - 1;
assert(Index >= 0 && "Bad frame index!");
ensureMaxAlignment(Alignment);
return Index;
}
/// CreateSpillStackObject - Create a new statically sized stack object that
/// represents a spill slot, returning a nonnegative identifier to represent
/// it.
///
int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
unsigned Alignment) {
Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption,
Alignment, 0,
TFI.getStackAlignment());
CreateStackObject(Size, Alignment, true, false);
int Index = (int)Objects.size() - NumFixedObjects - 1;
ensureMaxAlignment(Alignment);
return Index;
}
/// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
/// variable sized object has been created. This must be created whenever a
/// variable sized object is created, whether or not the index returned is
/// actually used.
///
int MachineFrameInfo::CreateVariableSizedObject(unsigned PrefAlignment,
unsigned MinAlignment, const AllocaInst *Alloca) {
HasVarSizedObjects = true;
unsigned Alignment = clampStackAlignment(
!TFI.isStackRealignable() || !RealignOption,
PrefAlignment, MinAlignment,
TFI.getStackAlignment(), Alloca);
Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0));
ensureMaxAlignment(Alignment);
return (int)Objects.size()-NumFixedObjects-1;
}
/// CreateFixedObject - Create a new object at a fixed location on the stack.
/// All fixed objects should be created before other objects are created for
/// efficiency. By default, fixed objects are immutable. This returns an
/// index with a negative value.
///
int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
bool Immutable) {
assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
// The alignment of the frame index can be determined from its offset from
// the incoming frame position. If the frame object is at offset 32 and
// the stack is guaranteed to be 16-byte aligned, then we know that the
// object is 16-byte aligned.
unsigned StackAlign = TFI.getStackAlignment();
unsigned Align = MinAlign(SPOffset, StackAlign);
Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption,
Align, 0, TFI.getStackAlignment());
Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
/*isSS*/ false,
/*NeedSP*/ false,
/*Alloca*/ 0));
return -++NumFixedObjects;
}
BitVector
MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
assert(MBB && "MBB must be valid");
const MachineFunction *MF = MBB->getParent();
assert(MF && "MBB must be part of a MachineFunction");
const TargetMachine &TM = MF->getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
BitVector BV(TRI->getNumRegs());
// Before CSI is calculated, no registers are considered pristine. They can be
// freely used and PEI will make sure they are saved.
if (!isCalleeSavedInfoValid())
return BV;
for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR)
BV.set(*CSR);
// The entry MBB always has all CSRs pristine.
if (MBB == &MF->front())
return BV;
// On other MBBs the saved CSRs are not pristine.
const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo();
for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
E = CSI.end(); I != E; ++I)
BV.reset(I->getReg());
return BV;
}
void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
if (Objects.empty()) return;
const TargetFrameLowering *FI = MF.getTarget().getFrameLowering();
int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
OS << "Frame Objects:\n";
for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
const StackObject &SO = Objects[i];
OS << " fi#" << (int)(i-NumFixedObjects) << ": ";
if (SO.Size == ~0ULL) {
OS << "dead\n";
continue;
}
if (SO.Size == 0)
OS << "variable sized";
else
OS << "size=" << SO.Size;
OS << ", align=" << SO.Alignment;
if (i < NumFixedObjects)
OS << ", fixed";
if (i < NumFixedObjects || SO.SPOffset != -1) {
int64_t Off = SO.SPOffset - ValOffset;
OS << ", at location [SP";
if (Off > 0)
OS << "+" << Off;
else if (Off < 0)
OS << Off;
OS << "]";
}
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineFrameInfo::dump(const MachineFunction &MF) const {
print(MF, dbgs());
}
#endif
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
/// getEntrySize - Return the size of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
// The size of a jump table entry is 4 bytes unless the entry is just the
// address of a block, in which case it is the pointer size.
switch (getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress:
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00
return TD.getPointerSize();
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
return 8;
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32:
case MachineJumpTableInfo::EK_Custom32:
return 4;
case MachineJumpTableInfo::EK_Inline:
return 0;
}
llvm_unreachable("Unknown jump table encoding!");
}
/// getEntryAlignment - Return the alignment of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
// The alignment of a jump table entry is the alignment of int32 unless the
// entry is just the address of a block, in which case it is the pointer
// alignment.
switch (getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress:
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00
return TD.getPointerABIAlignment();
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
return TD.getABIIntegerTypeAlignment(64);
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32:
case MachineJumpTableInfo::EK_Custom32:
return TD.getABIIntegerTypeAlignment(32);
case MachineJumpTableInfo::EK_Inline:
return 1;
}
llvm_unreachable("Unknown jump table encoding!");
}
/// createJumpTableIndex - Create a new jump table entry in the jump table info.
///
unsigned MachineJumpTableInfo::createJumpTableIndex(
const std::vector<MachineBasicBlock*> &DestBBs) {
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
return JumpTables.size()-1;
}
/// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update
/// the jump tables to branch to New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
ReplaceMBBInJumpTable(i, Old, New);
return MadeChange;
}
/// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update
/// the jump table to branch to New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
MachineJumpTableEntry &JTE = JumpTables[Idx];
for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
if (JTE.MBBs[j] == Old) {
JTE.MBBs[j] = New;
MadeChange = true;
}
return MadeChange;
}
void MachineJumpTableInfo::print(raw_ostream &OS) const {
if (JumpTables.empty()) return;
OS << "Jump Tables:\n";
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
OS << " jt#" << i << ": ";
for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
}
OS << '\n';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineJumpTableInfo::dump() const { print(dbgs()); }
#endif
//===----------------------------------------------------------------------===//
// MachineConstantPool implementation
//===----------------------------------------------------------------------===//
void MachineConstantPoolValue::anchor() { }
Type *MachineConstantPoolEntry::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
unsigned MachineConstantPoolEntry::getRelocationInfo() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getRelocationInfo();
return Val.ConstVal->getRelocationInfo();
}
MachineConstantPool::~MachineConstantPool() {
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry())
delete Constants[i].Val.MachineCPVal;
for (DenseSet<MachineConstantPoolValue*>::iterator I =
MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
I != E; ++I)
delete *I;
}
/// CanShareConstantPoolEntry - Test whether the given two constants
/// can be allocated the same constant pool entry.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
const DataLayout *TD) {
// Handle the trivial case quickly.
if (A == B) return true;
// If they have the same type but weren't the same constant, quickly
// reject them.
if (A->getType() == B->getType()) return false;
// We can't handle structs or arrays.
if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
return false;
// For now, only support constants with the same size.
uint64_t StoreSize = TD->getTypeStoreSize(A->getType());
if (StoreSize != TD->getTypeStoreSize(B->getType()) ||
StoreSize > 128)
return false;
Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
// Try constant folding a bitcast of both instructions to an integer. If we
// get two identical ConstantInt's, then we are good to share them. We use
// the constant folding APIs to do this so that we get the benefit of
// DataLayout.
if (isa<PointerType>(A->getType()))
A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
const_cast<Constant*>(A), TD);
else if (A->getType() != IntTy)
A = ConstantFoldInstOperands(Instruction::BitCast, IntTy,
const_cast<Constant*>(A), TD);
if (isa<PointerType>(B->getType()))
B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
const_cast<Constant*>(B), TD);
else if (B->getType() != IntTy)
B = ConstantFoldInstOperands(Instruction::BitCast, IntTy,
const_cast<Constant*>(B), TD);
return A == B;
}
/// getConstantPoolIndex - Create a new entry in the constant pool or return
/// an existing one. User must specify the log2 of the minimum required
/// alignment for the object.
///
unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (!Constants[i].isMachineConstantPoolEntry() &&
CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) {
if ((unsigned)Constants[i].getAlignment() < Alignment)
Constants[i].Alignment = Alignment;
return i;
}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
Constants.push_back(MachineConstantPoolEntry(C, Alignment));
return Constants.size()-1;
}
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
int Idx = V->getExistingMachineCPValue(this, Alignment);
if (Idx != -1) {
MachineCPVsSharingEntries.insert(V);
return (unsigned)Idx;
}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00
Constants.push_back(MachineConstantPoolEntry(V, Alignment));
return Constants.size()-1;
}
void MachineConstantPool::print(raw_ostream &OS) const {
if (Constants.empty()) return;
OS << "Constant Pool:\n";
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
OS << " cp#" << i << ": ";
if (Constants[i].isMachineConstantPoolEntry())
Constants[i].Val.MachineCPVal->print(OS);
else
OS << *(const Value*)Constants[i].Val.ConstVal;
OS << ", align=" << Constants[i].getAlignment();
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineConstantPool::dump() const { print(dbgs()); }
#endif