Enables using the high and high-adjusted symbol modifiers on thread local
storage modifers in powerpc assembly. Needed to be able to support 64 bit
thread-pointer and dynamic-thread-pointer access sequences.
Differential Revision: https://reviews.llvm.org/D47754
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334856 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for the "@high" and "@higha" symbol modifiers in powerpc64 assembly.
The modifiers represent accessing the segment consiting of bits 16-31 of a
64-bit address/offset.
Differential Revision: https://reviews.llvm.org/D47729
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334855 91177308-0d34-0410-b5e6-96231b3b80d8
functions.
This makes the ownership of the resulting MCObjectWriter clear, and allows us
to remove one instance of MCObjectStreamer's bizarre "holding ownership via
someone else's reference" trick.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315327 91177308-0d34-0410-b5e6-96231b3b80d8
ELFObjectWriter's constructor.
Fixes the same ownership issue for ELF that r315245 did for MachO:
ELFObjectWriter takes ownership of its MCELFObjectTargetWriter, so we want to
pass this through to the constructor via a unique_ptr, rather than a raw ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315254 91177308-0d34-0410-b5e6-96231b3b80d8
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
PR24686 identifies a problem where a relocation expression is invalid
when not all of the symbols in the expression can be locally
resolved. This causes the compiler to request a PC-relative half16ds
relocation, which is nonsensical for PowerPC. This patch recognizes
this situation and ensures we fail the assembly cleanly.
Test case provided by Anton Blanchard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251027 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have a dedicated type for ELF symbol, these helper functions can
become member function of MCSymbolELF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238864 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Large-model was added first. With the addition of support for multiple PIC
models in LLVM, now add small-model PIC for 32-bit PowerPC, SysV4 ABI. This
generates more optimal code, for shared libraries with less than about 16380
data objects.
Test Plan: Test cases added or updated
Reviewers: joerg, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, mcrosier, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5399
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221791 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in a previous checking to support the .localentry
directive on PowerPC, we need to inspect the actual target symbol
in needsRelocateWithSymbol to make the appropriate decision based
on that symbol's st_other bits.
Currently, needsRelocateWithSymbol does not get the target symbol.
However, it is directly available to its sole caller. This patch
therefore simply extends the needsRelocateWithSymbol by a new
parameter "const MCSymbolData &SD", passes in the target symbol,
and updates all derived implementations.
In particular, in the PowerPC implementation, this patch removes
the FIXME added by the previous checkin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213487 91177308-0d34-0410-b5e6-96231b3b80d8
A second binutils feature needed to support ELFv2 is the .localentry
directive. In the ELFv2 ABI, functions may have two entry points:
one for calling the routine locally via "bl", and one for calling the
function via function pointer (either at the source level, or implicitly
via a PLT stub for global calls). The two entry points share a single
ELF symbol, where the ELF symbol address identifies the global entry
point address, while the local entry point is found by adding a delta
offset to the symbol address. That offset is encoded into three
platform-specific bits of the ELF symbol st_other field.
The .localentry directive instructs the assembler to set those fields
to encode a particular offset. This is typically used by a function
prologue sequence like this:
func:
addis r2, r12, (.TOC.-func)@ha
addi r2, r2, (.TOC.-func)@l
.localentry func, .-func
Note that according to the ABI, when calling the global entry point,
r12 must be set to point the global entry point address itself; while
when calling the local entry point, r2 must be set to point to the TOC
base. The two instructions between the global and local entry point in
the above example translate the first requirement into the second.
This patch implements support in the PowerPC MC streamers to emit the
.localentry directive (both into assembler and ELF object output), as
well as support in the assembler parser to parse that directive.
In addition, there is another change required in MC fixup/relocation
handling to properly deal with relocations targeting function symbols
with two entry points: When the target function is known local, the MC
layer would immediately handle the fixup by inserting the target
address -- this is wrong, since the call may need to go to the local
entry point instead. The GNU assembler handles this case by *not*
directly resolving fixups targeting functions with two entry points,
but always emits the relocation and relies on the linker to handle
this case correctly. This patch changes LLVM MC to do the same (this
is done via the processFixupValue routine).
Similarly, there are cases where the assembler would normally emit a
relocation, but "simplify" it to a relocation targeting a *section*
instead of the actual symbol. For the same reason as above, this
may be wrong when the target symbol has two entry points. The GNU
assembler again handles this case by not performing this simplification
in that case, but leaving the relocation targeting the full symbol,
which is then resolved by the linker. This patch changes LLVM MC
to do the same (via the needsRelocateWithSymbol routine).
NOTE: The method used in this patch is overly pessimistic, since the
needsRelocateWithSymbol routine currently does not have access to the
actual target symbol, and thus must always assume that it might have
two entry points. This will be improved upon by a follow-on patch
that modifies common code to pass the target symbol when calling
needsRelocateWithSymbol.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213485 91177308-0d34-0410-b5e6-96231b3b80d8
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213427 91177308-0d34-0410-b5e6-96231b3b80d8
The fix itself is fairly simple: move getAccessVariant to MCValue so that we
replace the old weak expression evaluation with the far more general
EvaluateAsRelocatable.
This then requires that EvaluateAsRelocatable stop when it finds a non
trivial reference kind. And that in turn requires the ELF writer to look
harder for weak references.
Last but not least, this found a case where we were being bug by bug
compatible with gas and accepting an invalid input. I reported pr19647
to track it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207920 91177308-0d34-0410-b5e6-96231b3b80d8
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205076 91177308-0d34-0410-b5e6-96231b3b80d8
As a first step towards real little-endian code generation, this patch
changes the PowerPC MC layer to actually generate little-endian object
files. This involves passing the little-endian flag through the various
layers, including down to createELFObjectWriter so we actually get basic
little-endian ELF objects, emitting instructions in little-endian order,
and handling fixups and relocations as appropriate for little-endian.
The bulk of the patch is to update most test cases in test/MC/PowerPC
to verify both big- and little-endian encodings. (The only test cases
*not* updated are those that create actual big-endian ABI code, like
the TLS tests.)
Note that while the object files are now little-endian, the generated
code itself is not yet updated, in particular, it still does not adhere
to the ELFv2 ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204634 91177308-0d34-0410-b5e6-96231b3b80d8
Given
bar = foo + 4
.long bar
MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.
Fixing this unfortunately required some other changes:
* Since the variable is now evaluated, it would prevent the ELF writer from
noticing the weakref marker the elf streamer uses. This patch then replaces
that with a VariantKind in MCSymbolRefExpr.
* Using VariantKind then requires us to look past other VariantKind to see
.weakref bar,foo
call bar@PLT
doing this also fixes
zed = foo +2
call zed@PLT
so that is a good thing.
* Looking past VariantKind means that the relocation selection has to use
the fixup instead of the target.
This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204294 91177308-0d34-0410-b5e6-96231b3b80d8
In the commit message to r185476 I wrote:
>The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
>correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
>This causes some confusion with the asm parser, since VK_PPC_TLSGD
>is output as @tlsgd, which is then read back in as VK_TLSGD.
>
>To avoid this confusion, this patch removes the PowerPC-specific
>modifiers and uses the generic modifiers throughout. (The only
>drawback is that the generic modifiers are printed in upper case
>while the usual convention on PowerPC is to use lower-case modifiers.
>But this is just a cosmetic issue.)
This was unfortunately incorrect, there is is fact another,
serious drawback to using the default VK_TLSLD/VK_TLSGD
variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT
to return true, which in turn causes the ELFObjectWriter to emit
an undefined reference to _GLOBAL_OFFSET_TABLE_.
This is a problem on powerpc64, because it uses the TOC instead
of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_,
so the symbol remains undefined. This means shared libraries
using TLS built with the integrated assembler are currently
broken.
While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation
probably ought to be properly fixed at some point, for now I'm
simply reverting the r185476 commit. Now this in turn exposes
the breakage of handling @tlsgd/@tlsld in the asm parser that
this check-in was originally intended to fix.
To avoid this regression, I'm also adding a different fix for
this problem: while common code now parses @tlsgd as VK_TLSGD,
a special hack in the asm parser translates this code to the
platform-specific VK_PPC_TLSGD that the back-end now expects.
While this is not really pretty, it's self-contained and
shouldn't hurt anything else for now. One the underlying
problem is fixed, this hack can be reverted again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
When a target@got@tprel or target@got@tprel@l symbol variant is used in
a fixup_ppc_half16 (*not* fixup_ppc_half16ds) context, we currently fail,
since the corresponding R_PPC64_GOT_TPREL16 / R_PPC64_GOT_TPREL16_LO
relocation types do not exist.
However, since such symbol variants resolve to GOT offsets which are
always 4-aligned, we can simply instead use the _DS variants of the
relocation types, which *do* exist.
The same applies for the @got@dtprel variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185700 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the last missing construct to parse TLS-related
assembler code:
add 3, 4, symbol@tls
The ADD8TLS currently hard-codes the @tls into the assembler string.
This cannot be handled by the asm parser, since @tls is parsed as
a symbol variant. This patch changes ADD8TLS to have the @tls suffix
printed as symbol variant on output too, which allows us to remove
the isCodeGenOnly marker from ADD8TLS. This in turn means that we
can add a AsmOperand to accept @tls marked symbols on input.
As a side effect, this means that the fixup_ppc_tlsreg fixup type
is no longer necessary and can be merged into fixup_ppc_nofixup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185692 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
This causes some confusion with the asm parser, since VK_PPC_TLSGD
is output as @tlsgd, which is then read back in as VK_TLSGD.
To avoid this confusion, this patch removes the PowerPC-specific
modifiers and uses the generic modifiers throughout. (The only
drawback is that the generic modifiers are printed in upper case
while the usual convention on PowerPC is to use lower-case modifiers.
But this is just a cosmetic issue.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185476 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for TLS data relocations and modifiers:
.quad target@dtpmod
.quad target@tprel
.quad target@dtprel
Currently exploited by the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185394 91177308-0d34-0410-b5e6-96231b3b80d8
A @got reference must always result in a relocation, so that
the linker has a chance to set up the GOT entry, even if the
symbol happens to be local.
Add a PPCELFObjectWriter::ExplicitRelSym routine that enforces
a relocation to be emitted for GOT references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185353 91177308-0d34-0410-b5e6-96231b3b80d8
Add VK_... values and relocation types necessary to support
the @got family of modifiers. Used by the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184860 91177308-0d34-0410-b5e6-96231b3b80d8
There is currently only limited support for the "absolute" variants
of branch instructions. This patch adds support for the absolute
variants of all branches that are currently otherwise supported.
This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.
While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.
No change in code generation intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184721 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU assembler supports (as extension to the ABI) use of PC-relative
relocations in half16 fields, which allows writing code like:
li 1, base-.
This patch adds support for those relocation types in the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184552 91177308-0d34-0410-b5e6-96231b3b80d8
The current code base only supports the minimum set of tls-related
relocations and @modifiers that are necessary to support compiler-
generated code. This patch extends this to the full set defined
in the ABI (and supported by the GNU assembler) for the benefit
of the assembler parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184551 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the @higher, @highera, @highest, and @highesta
modifers, including some missing relocation types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184550 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the relocation type and other necessary infrastructure
to use the @toc@h modifier in the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184549 91177308-0d34-0410-b5e6-96231b3b80d8
This adds necessary infrastructure to support the @h modifier.
Note that all required relocation types were already present
(and unused).
This patch provides support for using @h in the assembler;
it would also be possible to now use this feature in code
generated by the compiler, but this is not done yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184548 91177308-0d34-0410-b5e6-96231b3b80d8
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent. This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.
For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.
No change in behaviour.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184547 91177308-0d34-0410-b5e6-96231b3b80d8
This is another minor cleanup; to bring enum names in line
with the corresponding @modifier names, this renames:
VK_PPC_TOC -> VK_PPC_TOCBASE
VK_PPC_TOC_ENTRY -> VK_PPC_TOC16
No code change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184491 91177308-0d34-0410-b5e6-96231b3b80d8
This just re-sorts the big switch statement in
PPCELFObjectWriter::getRelocTypeInner to follow
the (numerical) order of the reloc types, and
fixes a couple of whitespace issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184485 91177308-0d34-0410-b5e6-96231b3b80d8
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate. This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B). The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.
This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine. Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types. (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)
The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs. This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.
Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
Now that fixup_ppc_ha16 and fixup_ppc_lo16 are being treated exactly
the same everywhere, it no longer makes sense to have two fixup types.
This patch merges them both into a single type fixup_ppc_half16,
and renames fixup_ppc_lo16_ds to fixup_ppc_half16ds for consistency.
(The half16 and half16ds names are taken from the description of
relocation types in the PowerPC ABI.)
No change in code generation expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182092 91177308-0d34-0410-b5e6-96231b3b80d8
The current PowerPC MC back end distinguishes between fixup_ppc_ha16
and fixup_ppc_lo16, which are determined by the instruction the fixup
applies to, and uses this distinction to decide whether a fixup ought
to resolve to the high or the low part of a symbol address.
This isn't quite correct, however. It is valid -if unusual- assembler
to use, e.g.
li 1, symbol@ha
or
lis 1, symbol@l
Whether the high or the low part of the address is used depends solely
on the @ suffix, not on the instruction.
In addition, both
li 1, symbol
and
lis 1, symbol
are valid, assuming the symbol address fits into 16 bits; again, both
will then refer to the actual symbol value (so li will load the value
itself, while lis will load the value shifted by 16).
To fix this, two places need to be adapted. If the fixup cannot be
resolved at assembler time, a relocation needs to be emitted via
PPCELFObjectWriter::getRelocType. This routine already looks at
the VK_ type to determine the relocation. The only problem is that
will reject any _LO modifier in a ha16 fixup and vice versa. This
is simply incorrect; any of those modifiers ought to be accepted
for either fixup type.
If the fixup *can* be resolved at assembler time, adjustFixupValue
currently selects the high bits of the symbol value if the fixup
type is ha16. Again, this is incorrect; see the above example
lis 1, symbol
Now, in theory we'd have to respect a VK_ modifier here. However,
in fact common code never even attempts to resolve symbol references
using any nontrivial VK_ modifier at assembler time; it will always
fall back to emitting a reloc and letting the linker handle it.
If this ever changes, presumably there'd have to be a target callback
to resolve VK_ modifiers. We'd then have to handle @ha etc. there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182091 91177308-0d34-0410-b5e6-96231b3b80d8