Rather than adding more bits to express every
MMO flag you could want, just directly use the
MMO flags. Also fixes using a bunch of bool arguments to
getMemIntrinsicNode.
On AMDGPU, buffer and image intrinsics should always
have MODereferencable set, but currently there is no
way to do that directly during the initial intrinsic
lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@320746 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add isRenamable() predicate to MachineOperand. This predicate can be
used by machine passes after register allocation to determine whether it
is safe to rename a given register operand. Register operands that
aren't marked as renamable may be required to be assigned their current
register to satisfy constraints that are not captured by the machine
IR (e.g. ABI or ISA constraints).
Reviewers: qcolombet, MatzeB, hfinkel
Subscribers: nemanjai, mcrosier, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D39400
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@320503 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preparatory step for D34515.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
- fixes PR34564
- fixes PR35103
Differential Revision: https://reviews.llvm.org/D35192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@320355 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The compiler fails with the following error message:
fatal error: error in backend: ran out of registers during
register allocation
Tail call optimization for Armv8-M.base fails to meet all the required
constraints when handling calls to function pointers where the
arguments take up r0-r3. This is because the pointer to the
function to be called can only be stored in r0-r3, but these are
all occupied by arguments. This patch makes sure that tail call
optimization does not try to handle this type of calls.
Reviewers: chill, MatzeB, olista01, rengolin, efriedma
Reviewed By: olista01, efriedma
Subscribers: efriedma, aemerson, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D40706
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319664 91177308-0d34-0410-b5e6-96231b3b80d8
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318490 91177308-0d34-0410-b5e6-96231b3b80d8
't' constraint normally only accepts f32 operands, but for VCVT the
operands can be i32. LLVM is overly restrictive and rejects asm like:
float foo() {
float result;
__asm__ __volatile__(
"vcvt.f32.s32 %[result], %[arg1]\n"
: [result]"=t"(result)
: [arg1]"t"(0x01020304) );
return result;
}
Relax the value type for 't' constraint to either f32 or i32.
Differential Revision: https://reviews.llvm.org/D40137
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318472 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes PR35221.
Use pseudo-instructions to let MachineCSE hoist global address computation.
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D39871
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318081 91177308-0d34-0410-b5e6-96231b3b80d8
When generating table jump code for switch statements, place the jump
table label as the first operand in the various addition instructions
in order to enable addressing mode selectors to better match index
computation and possibly fold them into the addressing mode of the
table entry load instruction.
Differential revision: https://reviews.llvm.org/D39752
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318033 91177308-0d34-0410-b5e6-96231b3b80d8
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317647 91177308-0d34-0410-b5e6-96231b3b80d8
The generic dag combiner will fold:
(shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
(shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
This can create constants which are too large to use as an immediate.
Many ALU operations are also able of performing the shl, so we can
unfold the transformation to prevent a mov imm instruction from being
generated.
Other patterns, such as b + ((a << 1) | 510), can also be simplified
in the same manner.
Differential Revision: https://reviews.llvm.org/D38084
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317197 91177308-0d34-0410-b5e6-96231b3b80d8
As far as I can tell, this matches gcc: -mfloat-abi determines the
calling convention for all functions except those explicitly defined as
soft-float in the ARM RTABI.
This change only affects cases where the user specifies -mfloat-abi to
override the default calling convention derived from the target triple.
Fixes https://bugs.llvm.org//show_bug.cgi?id=34530.
Differential Revision: https://reviews.llvm.org/D38299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316708 91177308-0d34-0410-b5e6-96231b3b80d8
This adds some more debug messages to the type legalizer and functions
like PromoteNode, ExpandNode, ExpandLibCall in an attempt to make
the debug messages a little bit more informative and useful.
Differential Revision: https://reviews.llvm.org/D38450
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314773 91177308-0d34-0410-b5e6-96231b3b80d8
I implemented isTruncateFree in rL313533, this patch fixes the logic
to match my comment, as the previous logic was too general. Now the
only truncates that are free are i64 -> i32.
Differential Revision: https://reviews.llvm.org/D38234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314280 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preparatory step for D34515.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
- fixes PR34564
Differential Revision: https://reviews.llvm.org/D35192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313618 91177308-0d34-0410-b5e6-96231b3b80d8
This was causing PR34045 to fire again.
> This is a preparatory step for D34515 and also is being recommitted as its
> first version caused PR34045.
>
> This change:
> - makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
> - lowering is done by first converting the boolean value into the carry flag
> using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
> using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
> operations does the actual addition.
> - for subtraction, given that ISD::SUBCARRY second result is actually a
> borrow, we need to invert the value of the second operand and result before
> and after using ARMISD::SUBE. We need to invert the carry result of
> ARMISD::SUBE to preserve the semantics.
> - given that the generic combiner may lower ISD::ADDCARRY and
> ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
> as well otherwise i64 operations now would require branches. This implies
> updating the corresponding test for unsigned.
> - add new combiner to remove the redundant conversions from/to carry flags
> to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
> - fixes PR34045
>
> Differential Revision: https://reviews.llvm.org/D35192
Also revert follow-up r313010:
> [ARM] Fix typo when creating ISD::SUB nodes
>
> In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
> giving them two values instead of one.
>
> This fails when the merge_values combiner finds one of these nodes.
>
> This change fixes PR34564.
>
> Differential Revision: https://reviews.llvm.org/D37690
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313044 91177308-0d34-0410-b5e6-96231b3b80d8
In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
giving them two values instead of one.
This fails when the merge_values combiner finds one of these nodes.
This change fixes PR34564.
Differential Revision: https://reviews.llvm.org/D37690
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313010 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preparatory step for D34515 and also is being recommitted as its
first version caused PR34045.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
Differential Revision: https://reviews.llvm.org/D35192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313009 91177308-0d34-0410-b5e6-96231b3b80d8
It caused PR34564.
> This is a preparatory step for D34515 and also is being recommitted as its
> first version caused PR34045.
>
> This change:
> - makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
> - lowering is done by first converting the boolean value into the carry flag
> using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
> using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
> operations does the actual addition.
> - for subtraction, given that ISD::SUBCARRY second result is actually a
> borrow, we need to invert the value of the second operand and result before
> and after using ARMISD::SUBE. We need to invert the carry result of
> ARMISD::SUBE to preserve the semantics.
> - given that the generic combiner may lower ISD::ADDCARRY and
> ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
> as well otherwise i64 operations now would require branches. This implies
> updating the corresponding test for unsigned.
> - add new combiner to remove the redundant conversions from/to carry flags
> to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
> - fixes PR34045
>
> Differential Revision: https://reviews.llvm.org/D35192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312980 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preparatory step for D34515 and also is being recommitted as its
first version caused PR34045.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
Differential Revision: https://reviews.llvm.org/D35192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312898 91177308-0d34-0410-b5e6-96231b3b80d8
This exposes the isReadOnly(GlobalValue *) in the ARMTargetLowering so
we can make use of it in GlobalISel as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312320 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend should call setBooleanContents so that it can
use known bits to make some optimizations.
Review: D35821
Patch by Joel Galenson <jgalenson@google.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311446 91177308-0d34-0410-b5e6-96231b3b80d8
The calling convention can be specified by the user in IR. Failing to support
a particular calling convention isn't a programming error, and so relying on
llvm_unreachable to catch and report an unsupported calling convention is not
appropriate.
Differential Revision: https://reviews.llvm.org/D36830
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311435 91177308-0d34-0410-b5e6-96231b3b80d8
This is the exact same fix as in SVN r247254. In that commit, the fix was
applied only for isVTRNMask and isVTRN_v_undef_Mask, but the same issue
is present for VZIP/VUZP as well.
This fixes PR33921.
Differential Revision: https://reviews.llvm.org/D36899
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311258 91177308-0d34-0410-b5e6-96231b3b80d8
When lowering a VLA, we emit a __chstk call. However, this call can
internally clobber CPSR. We did not mark this register as an ImpDef,
which could potentially allow a comparison to be hoisted above the call
to `__chkstk`. In such a case, the CPSR could be clobbered, and the
check invalidated. When the support was initially added, it seemed that
the call would take care of preventing CPSR from being clobbered, but
this is not the case. Mark the register as clobbered to fix a possible
state corruption.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311061 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Without the SrcVT its hard to know what is really being asked for. For example if your target has 128, 256, and 512 bit vectors. Maybe extracting 128 from 256 is cheap, but maybe extracting 128 from 512 is not.
For x86 we do support extracting a quarter of a 512-bit register. But for i1 vectors we don't have isel patterns for extracting arbitrary pieces. So we need this to have a correct implementation of isExtractSubvectorCheap for mask vectors.
Reviewers: RKSimon, zvi, efriedma
Reviewed By: RKSimon
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D36649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310793 91177308-0d34-0410-b5e6-96231b3b80d8
This patch:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) <- (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) <- (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRY into ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) -> C
Differential Revision: https://reviews.llvm.org/D35192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309923 91177308-0d34-0410-b5e6-96231b3b80d8
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309911 91177308-0d34-0410-b5e6-96231b3b80d8
Changing mask argument type from const SmallVectorImpl<int>& to
ArrayRef<int>.
This came up in D35700 where a mask is received as an ArrayRef<int> and
we want to pass it to TargetLowering::isShuffleMaskLegal().
Also saves a few lines of code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309085 91177308-0d34-0410-b5e6-96231b3b80d8
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308729 91177308-0d34-0410-b5e6-96231b3b80d8
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307722 91177308-0d34-0410-b5e6-96231b3b80d8
r306334 fixed a bug in AArch64 dealing with wide interleaved accesses having
pointer types. The bug also exists in ARM, so this patch copies over the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307409 91177308-0d34-0410-b5e6-96231b3b80d8
On big-endian machines the high and low parts of the value accessed by ldrexd
and strexd are swapped around. To account for this we swap inputs and outputs
in ISelLowering.
Patch by Bharathi Seshadri.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306865 91177308-0d34-0410-b5e6-96231b3b80d8
Resubmission of r305387, which was reverted at r305390. The Address
Sanitizer caught a stack-use-after-scope of a Twine variable. This
is now fixed by passing the Twine directly as a function parameter.
The ARM backend asserts against constant pool lowering when it generates
execute-only code in order to prevent the generation of constant pools in
the text section. It appears that target independent optimizations might
generate DAG nodes that represent constant pools. By lowering such nodes
as global addresses we don't violate the semantics of execute-only code
and also it is guaranteed that execute-only behaves correct with the
position-independent addressing modes that support execute-only code.
Differential Revision: https://reviews.llvm.org/D33773
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305776 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 3a204faa093c681a1e96c5e0622f50649b761ee0.
I've upset a buildbot which runs the address sanitizer:
ERROR: AddressSanitizer: stack-use-after-scope
lib/Target/ARM/ARMISelLowering.cpp:2690
That Twine variable is used illegally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305390 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend asserts against constant pool lowering when it generates
execute-only code in order to prevent the generation of constant pools in
the text section. It appears that target independent optimizations might
generate DAG nodes that represent constant pools. By lowering such nodes
as global addresses we don't violate the semantics of execute-only code
and also it is guaranteed that execute-only behaves correct with the
position-independent addressing modes that support execute-only code.
Differential Revision: https://reviews.llvm.org/D33773
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305387 91177308-0d34-0410-b5e6-96231b3b80d8