This is possible in ways that are not compiler bugs,
so stop asserting on them.
This emits an extra error when emitting objects when it
can't encode the new pseudo, but I'm not sure that matters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299712 91177308-0d34-0410-b5e6-96231b3b80d8
Previously compiler often extracted common immediates into specific register, e.g.:
```
%vreg0 = S_MOV_B32 0xff;
%vreg2 = V_AND_B32_e32 %vreg0, %vreg1
%vreg4 = V_AND_B32_e32 %vreg0, %vreg3
```
Because of this SDWA peephole failed to find SDWA convertible pattern. E.g. in previous example this could be converted into 2 SDWA src operands:
```
SDWA src: %vreg2 src_sel:BYTE_0
SDWA src: %vreg4 src_sel:BYTE_0
```
With this change peephole check if operand is either immediate or register that is copy of immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299202 91177308-0d34-0410-b5e6-96231b3b80d8
As we introduced target triple environment amdgiz and amdgizcl, the address
space values are no longer enums. We have to decide the value by target triple.
The basic idea is to use struct AMDGPUAS to represent address space values.
For address space values which are not depend on target triple, use static
const members, so that they don't occupy extra memory space and is equivalent
to a compile time constant.
Since the struct is lightweight and cheap, it can be created on the fly at
the point of usage. Or it can be added as member to a pass and created at
the beginning of the run* function.
Differential Revision: https://reviews.llvm.org/D31284
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298846 91177308-0d34-0410-b5e6-96231b3b80d8
StructurizeCFG can't handle cases with multiple
returns creating regions with multiple exits.
Create a copy of UnifyFunctionExitNodes that only
unifies exit nodes that skips exit nodes
with uniform branch sources.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298729 91177308-0d34-0410-b5e6-96231b3b80d8
Since v_max_f32_e64/v_max_f16_e64 can be folded if the target
instruction supports the clamp bit, we also need to maintain
modifiers when converting v_mac to v_mad.
This fixes a rendering issue with Dirt Rally because a v_mac
instruction with the clamp bit set was converted to a v_mad
but that bit was lost during the conversion.
Fixes: e184e01dd79 ("AMDGPU: Fold FP clamp as modifier bit")
Patch by Samuel Pitoiset <samuel.pitoiset@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297556 91177308-0d34-0410-b5e6-96231b3b80d8
Before frame offsets are calculated, try to eliminate the
frame indexes used by SGPR spills. Then we can delete them
after.
I think for now we can be sure that no other instruction
will be re-using the same frame indexes. It should be easy
to notice if this assumption ever breaks since everything
asserts if it tries to use a dead frame index later.
The unused emergency stack slot seems to still be left behind,
so an additional 4 bytes is still wasted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295753 91177308-0d34-0410-b5e6-96231b3b80d8
The operand types were defined to fit the fp16_to_fp node, which
has the half as an integer type. v_cvt_f32_f16 does support
source modifiers, so change this to have an FP type and modifiers.
For targets without legal f16, this requires recognizing the
bit operations and trying to produce them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293857 91177308-0d34-0410-b5e6-96231b3b80d8
Leave early ifcvt disabled for now since there are some
shader-db regressions.
This causes some immediate improvements, but could be better.
The cost checking that the pass does is based on critical path
length for out of order CPUs which we do not want so it skips out
on many cases we want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293016 91177308-0d34-0410-b5e6-96231b3b80d8
Inline spiller can decide to move a spill as early as possible in the basic block.
It will skip phis and label, but we also need to make sure it skips instructions
in the basic block prologue which restore exec mask.
Added isPositionLike callback in TargetInstrInfo to detect instructions which
shall be skipped in addition to common phis, labels etc.
Differential Revision: https://reviews.llvm.org/D27997
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292554 91177308-0d34-0410-b5e6-96231b3b80d8
When the instruction is processed the first time, it may be
deleted resulting in crashes. While the new test adds the same
user to the worklist twice, this particular case doesn't crash
but I'm not sure why.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290191 91177308-0d34-0410-b5e6-96231b3b80d8
Since 32-bit instructions with 32-bit input immediate behavior
are used to materialize 16-bit constants in 32-bit registers
for 16-bit instructions, determining the legality based
on the size is incorrect. Change operands to have the size
specified in the type.
Also adds a workaround for a disassembler bug that
produces an immediate MCOperand for an operand that
is supposed to be OPERAND_REGISTER.
The assembler appears to accept out of bounds immediates and
truncates them, but this seems to be an issue for 32-bit
already.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289306 91177308-0d34-0410-b5e6-96231b3b80d8
Use vaddr/vdst for the same purposes.
This also fixes a beg in SIInsertWaits for the
operand check. The stored value operand is currently called
data0 in the single offset case, not data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288188 91177308-0d34-0410-b5e6-96231b3b80d8
m0 may need to be written for spill code, so
we don't want general code uses relying on the
value stored in it.
This introduces a few code quality regressions where copies
from m0 are not coalesced into copies of a copy of m0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287841 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The addr64-based legalization is incorrect for MUBUF instructions with idxen
set as well as for BUFFER_LOAD/STORE_FORMAT_* instructions. This affects
e.g. shaders that access buffer textures.
Since we never actually need the addr64-legalization in shaders, this patch
takes the easy route and keys off the calling convention. If this ever
affects (non-OpenGL) compute, the type of legalization needs to be chosen
based on some TSFlag.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98664
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D26747
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287339 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
1. Don't try to copy values to and from the same register class.
2. Replace copies with of registers with immediate values with v_mov/s_mov
instructions.
The main purpose of this change is to make MachineSink do a better job of
determining when it is beneficial to split a critical edge, since the pass
assumes that copies will become move instructions.
This prevents a regression in uniform-cfg.ll if we enable critical edge
splitting for AMDGPU.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: https://reviews.llvm.org/D23408
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287131 91177308-0d34-0410-b5e6-96231b3b80d8
The wave barrier represents the discardable barrier. Its main purpose is to
carry convergent attribute, thus preventing illegal CFG optimizations. All lanes
in a wave come to convergence point simultaneously with SIMT, thus no special
instruction is needed in the ISA. The barrier is discarded during code generation.
Differential Revision: https://reviews.llvm.org/D26585
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287007 91177308-0d34-0410-b5e6-96231b3b80d8
nThis avoids the nasty problems caused by using
memory instructions that read the exec mask while
spilling / restoring registers used for control flow
masking, but only for VI when these were added.
This always uses the scalar stores when enabled currently,
but it may be better to still try to spill to a VGPR
and use this on the fallback memory path.
The cache also needs to be flushed before wave termination
if a scalar store is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286766 91177308-0d34-0410-b5e6-96231b3b80d8
If the branch was on a read-undef of vcc, passes that used
analyzeBranch to invert the branch condition wouldn't preserve
the undef flag resulting in a verifier error.
Fixes verifier failures in a future commit.
Also fix verifier error when inserting copy for vccz
corruption bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286133 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The post-RA scheduler occasionally uses additional implicit operands when
the vector implicit operand as a whole is killed, but some subregisters
are still live because they are directly referenced later. Unfortunately,
this seems incredibly subtle to reproduce.
Fixes piglit spec/glsl-110/execution/variable-indexing/vs-temp-array-mat2-index-wr.shader_test
and others.
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D25656
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285835 91177308-0d34-0410-b5e6-96231b3b80d8
This is the conservatively correct way because it's easy to
move or replace a scalar immediate. This was incorrect in the case
when the register class wasn't known from the static instruction
definition, but still needed to be an SGPR. The main example of this
is inlineasm has an SGPR constraint.
Also start verifying the register classes of inlineasm operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285762 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions with a 32-bit base encoding with an optional
32-bit literal encoded after them report their size as 4
for the disassembler. Consider these when computing the
MachineInstr size. This fixes problems caused by size estimate
consistency in BranchRelaxation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285743 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Flat instruction can return out of order, so we need always need to wait
for all the outstanding flat operations.
Reviewers: tony-tye, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D25998
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285479 91177308-0d34-0410-b5e6-96231b3b80d8
Also add glc bit to the scalar loads since they exist on VI
and change the caching behavior.
This currently has an assembler bug where the glc bit is incorrectly
accepted on SI/CI which do not have it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285463 91177308-0d34-0410-b5e6-96231b3b80d8
It's possible to have a use of the private resource descriptor or
scratch wave offset registers even though there are no allocated
stack objects. This would result in continuing to use the maximum
number reserved registers. This could go over the number of SGPRs
available on VI, or violate the SGPR limit requested by
the function attributes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285435 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The v_movreld machine instruction is used with three operands that are
in a sense tied to each other (the explicit VGPR_32 def and the implicit
VGPR_NN def and use). There is no way to express that using the currently
available operand bits, and indeed there are cases where the Two Address
instructions pass does the wrong thing.
This patch introduces a new set of pseudo instructions that are identical
in intended semantics as v_movreld, but they only have two tied operands.
Having to add a new set of pseudo instructions is admittedly annoying, but
it's a fairly straightforward and solid approach. The only alternative I
see is to try to teach the Two Address instructions pass about Three Address
instructions, and I'm afraid that's trickier and is going to end up more
fragile.
Note that v_movrels does not suffer from this problem, and so this patch
does not touch it.
This fixes several GL45-CTS.shaders.indexing.* tests.
Reviewers: tstellarAMD, arsenm
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25633
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284980 91177308-0d34-0410-b5e6-96231b3b80d8
This is the most basic handling of the indirect access
pseudos using GPR indexing mode. This currently only enables
the mode for a single v_mov_b32 and then disables it.
This is much more complicated to use than the movrel instructions,
so a new optimization pass is probably needed to fold the access
into the uses and keep the mode enabled for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284031 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason there are both of these available, except
for scalar 64-bit compares which only has u64. I'm not sure
why there are both (I'm guessing it's for the one bit inputs we
don't use), but for consistency always using the
unsigned one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282832 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes to allow spilling all registers at the end of the block
work with exec modifications. Don't emit s_and_saveexec_b64 for
if lowering, and instead emit copies. Mark control flow mask
instructions as terminators to get correct spill code placement
with fast regalloc, and then have a separate optimization pass
form the saveexec.
This should work if SGPRs are spilled to VGPRs, but
will likely fail in the case that an SGPR spills to memory
and no workitem takes a divergent branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282667 91177308-0d34-0410-b5e6-96231b3b80d8