We were frequently checking for a list of types and the different types
conveyed no real information. So lump them together explicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292095 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the assembler check their size and removes a hack from the disassembler to avoid sign extending the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226645 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
This controls the number of operands in the disassembler's x86OperandSets
table. The entries describe how the operand is encoded and its type.
Not to surprisingly 5 operands is insufficient for AVX512. Consider
VALIGNDrrik in the next patch. These are its operand specifiers:
{ /* 328 */
{ ENCODING_DUP, TYPE_DUP1 },
{ ENCODING_REG, TYPE_XMM512 },
{ ENCODING_WRITEMASK, TYPE_VK8 },
{ ENCODING_VVVV, TYPE_XMM512 },
{ ENCODING_RM_CD64, TYPE_XMM512 },
{ ENCODING_IB, TYPE_IMM8 },
},
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214889 91177308-0d34-0410-b5e6-96231b3b80d8
There are two parts here. First is to modify tablegen to adjust the encoding
type ENCODING_RM with the scaling factor.
The second is to use the new encoding types to compute the correct
displacement in the decoder.
Fixes <rdar://problem/17608489>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213281 91177308-0d34-0410-b5e6-96231b3b80d8
X86_MAX_OPERANDS is changed to unsigned.
Also, add range-based for loops for affected loops. This in turn
needed an ArrayRef instead of a pointer-to-array in
InternalInstruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207413 91177308-0d34-0410-b5e6-96231b3b80d8
reason to expose a global symbol 'decodeInstruction' nor to pollute the global
scope with a bunch of external linkage entities (some of which conflict with
others elsewhere in LLVM).
This is just the initial transition to C++; more cleanups to follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206717 91177308-0d34-0410-b5e6-96231b3b80d8
The addition of IC_OPSIZE_ADSIZE in r198759 wasn't quite complete. It
also turns out to have been unnecessary. The disassembler handles the
AdSize prefix for itself, and doesn't care about the difference between
(e.g.) MOV8ao8 and MOB8ao8_16 definitions. So just let them coexist and
don't worry about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199654 91177308-0d34-0410-b5e6-96231b3b80d8
It seems there is no separate instruction class for having AdSize *and*
OpSize bits set, which is required in order to disambiguate between all
these instructions. So add that to the disassembler.
Hm, perhaps we do need an AdSize16 bit after all?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198759 91177308-0d34-0410-b5e6-96231b3b80d8
Added scalar compare VCMPSS, VCMPSD.
Implemented LowerSELECT for scalar FP operations.
I replaced FSETCCss, FSETCCsd with one node type FSETCCs.
Node extract_vector_elt(v16i1/v8i1, idx) returns an element of type i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197384 91177308-0d34-0410-b5e6-96231b3b80d8
Add VEX_LIG to scalar FMA4 instructions.
Use VEX_LIG in some of the inheriting checks in disassembler table generator.
Make use of VEX_L_W, VEX_L_W_XS, VEX_L_W_XD contexts.
Don't let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from their non-L forms unless VEX_LIG is set.
Let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from all of their non-L or non-W cases.
Increase ranking on VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE so they get chosen over non-L/non-W forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191649 91177308-0d34-0410-b5e6-96231b3b80d8