This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299899 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299875 91177308-0d34-0410-b5e6-96231b3b80d8
A common way to implement nearbyint is by fiddling with the floating
point environment and calling rint. This is used at least by the BSD
libm and musl. As such, canonicalizing the latter to the former will
create infinite loops for libm and generally pessimize performance, at
least when the generic C versions are used.
This change preserves the rint in the libcall translation and also
handles the domain truncation logic, so that rint with float argument
will be reduced to rintf etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299247 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Currently the VP metadata was dropped when InstCombine converts a call to direct call. This patch converts the VP metadata to branch_weights so that its hotness is recorded.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299228 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298393 91177308-0d34-0410-b5e6-96231b3b80d8
The typical use is a library vote function which
compares to 0. Fold the user condition into the intrinsic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297650 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Solves PR 31990.
The bad rewrite could replace a memcpy of one word with
store i4 -1
while it should actually be
store i8 -1
Hopefully opt and llc has improved enough so the original optimization
done by the code isn't needed anymore.
One already existing testcase is affected. It originally tested that
the memcpy was replaced with
load double
but since we now remove that rewrite it will be
load i64
instead.
Patch suggestion by Eli Friedman.
Reviewers: eli.friedman, majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D30254
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296585 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If there are two adjacent guards with different conditions, we can
remove one of them and include its condition into the condition of
another one. This patch allows InstCombine to merge them by the
following pattern:
guard(a); guard(b) -> guard(a & b).
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29378
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293778 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There are many NVVM intrinsics that we can't entirely get rid of, but
that nonetheless often correspond to target-generic LLVM intrinsics.
For example, if flush denormals to zero (ftz) is enabled, we can convert
@llvm.nvvm.ceil.ftz.f to @llvm.ceil.f32. On the other hand, if ftz is
disabled, we can't do this, because @llvm.ceil.f32 will be lowered to a
non-ftz PTX instruction. In this case, we can, however, simplify the
non-ftz nvvm ceil intrinsic, @llvm.nvvm.ceil.f, to @llvm.ceil.f32.
These transformations are particularly useful because they let us
constant fold instructions that appear in libdevice, the bitcode library
that ships with CUDA and essentially functions as its libm.
Reviewers: tra
Subscribers: hfinkel, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D28794
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293244 91177308-0d34-0410-b5e6-96231b3b80d8
This change reverts:
r293061: "[InstCombine] Canonicalize guards for NOT OR condition"
r293058: "[InstCombine] Canonicalize guards for AND condition"
They miscompile cases like:
```
declare void @llvm.experimental.guard(i1, ...)
define void @test_guard_not_or(i1 %A, i1 %B) {
%C = or i1 %A, %B
%D = xor i1 %C, true
call void(i1, ...) @llvm.experimental.guard(i1 %D, i32 20, i32 30)[ "deopt"() ]
ret void
}
```
because they do transfer the `i32 20, i32 30` parameters to newly
created guard instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293227 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic uses bit 0 and bit 4 of an immediate argument to determine which bits of its inputs to read. This patch uses this information to simplify the demanded elements of the input vectors.
Differential Revision: https://reviews.llvm.org/D28979
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293151 91177308-0d34-0410-b5e6-96231b3b80d8
Added early out for single undef input - we were already supporting (and testing) this in the constant folding code, we just do it quicker now
Drop undef handling from demanded elts code now that we handle it fully in InstCombiner::visitCallInst
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292913 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on D28777 - we don't need to handle 'all element' shuffles inside InstCombiner::visitCallInst as InstCombiner::SimplifyDemandedVectorElts will do everything we need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292365 91177308-0d34-0410-b5e6-96231b3b80d8
Add missing fabs(fpext) optimzation that worked with the call,
and also fixes it creating a second fpext when there were multiple
uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292172 91177308-0d34-0410-b5e6-96231b3b80d8
Here's my second try at making @llvm.assume processing more efficient. My
previous attempt, which leveraged operand bundles, r289755, didn't end up
working: it did make assume processing more efficient but eliminating the
assumption cache made ephemeral value computation too expensive. This is a
more-targeted change. We'll keep the assumption cache, but extend it to keep a
map of affected values (i.e. values about which an assumption might provide
some information) to the corresponding assumption intrinsics. This allows
ValueTracking and LVI to find assumptions relevant to the value being queried
without scanning all assumptions in the function. The fact that ValueTracking
started doing O(number of assumptions in the function) work, for every
known-bits query, has become prohibitively expensive in some cases.
As discussed during the review, this is a pragmatic fix that, longer term, will
likely be replaced by a more-principled solution (perhaps based on an extended
SSA form).
Differential Revision: https://reviews.llvm.org/D28459
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291671 91177308-0d34-0410-b5e6-96231b3b80d8
I wrote this patch before seeing the comment in:
https://reviews.llvm.org/D27114
...that suggests we should actually be canonicalizing the other way.
So just in case we decide this is the right way, we might as well
have a cleaner implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290912 91177308-0d34-0410-b5e6-96231b3b80d8
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
This builds on r290554 which added supported for 128 and 256-bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290582 91177308-0d34-0410-b5e6-96231b3b80d8
An earlier commit added support for unmasked scalar operations. At that time isel wouldn't generate an optimal sequence for masked operations, but that has now been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290566 91177308-0d34-0410-b5e6-96231b3b80d8