Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261605 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds some missing calls to MBB::normalizeSuccProbs() in several
locations where it should be called. Those places are found by checking if the
sum of successors' probabilities is approximate one in MachineBlockPlacement
pass with some instrumented code (not in this patch).
Differential revision: http://reviews.llvm.org/D15259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255455 91177308-0d34-0410-b5e6-96231b3b80d8
computeRegisterLiveness() was broken in that it reported dead for a
register even if a subregister was alive. I assume this was because the
results of analayzePhysRegs() are hard to understand with respect to
subregisters.
This commit: Changes the results of analyzePhysRegs (=struct
PhysRegInfo) to be clearly understandable, also renames the fields to
avoid silent breakage of third-party code (and improve the grammar).
Fix all (two) users of computeRegisterLiveness() in llvm: By reenabling
it and removing workarounds for the bug.
This fixes http://llvm.org/PR24535 and http://llvm.org/PR25033
Differential Revision: http://reviews.llvm.org/D15320
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255362 91177308-0d34-0410-b5e6-96231b3b80d8
Previously it is not allowed for each MBB to have successors with both known and
unknown probabilities. However, this may be too strict as at this stage we could
not always guarantee that. It is better to remove this restriction now, and I
will work on validating MBB's successors' probabilities first (for example,
check if the sum is approximate one).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254402 91177308-0d34-0410-b5e6-96231b3b80d8
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254377 91177308-0d34-0410-b5e6-96231b3b80d8
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254366 91177308-0d34-0410-b5e6-96231b3b80d8
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254348 91177308-0d34-0410-b5e6-96231b3b80d8
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253965 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252318 91177308-0d34-0410-b5e6-96231b3b80d8
When optimization is disabled, edge weights that are stored in MBB won't be used so that we don't have to store them. Currently, this is done by adding successors with default weight 0, and if all successors have default weights, the weight list will be empty. But that the weight list is empty doesn't mean disabled optimization (as is stated several times in MachineBasicBlock.cpp): it may also mean all successors just have default weights.
We should discourage using default weights when adding successors, because it is very easy for users to forget update the correct edge weights instead of using default ones (one exception is that the MBB only has one successor). In order to detect such usages, it is better to differentiate using default weights from the case when optimizations is disabled.
In this patch, a new interface addSuccessorWithoutWeight(MBB*) is created for when optimization is disabled. In this case, MBB will try to maintain an empty weight list, but it cannot guarantee this as for many uses of addSuccessor() whether optimization is disabled or not is not checked. But it can guarantee that if optimization is enabled, then the weight list always has the same size of the successor list.
Differential revision: http://reviews.llvm.org/D13963
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251429 91177308-0d34-0410-b5e6-96231b3b80d8
getLandingPadSuccessor assumes that each invoke can have at most one EH
pad successor, but WinEH invokes can have more than one. Two out of
three callers of getLandingPadSuccessor don't use the returned
landingpad, so we can make them use this simple predicate instead.
Eventually we'll have to circle back and fix SplitKit.cpp so that
register allocation works. Baby steps.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247904 91177308-0d34-0410-b5e6-96231b3b80d8
With subregister liveness enabled we can detect the case where only
parts of a register are live in, this is expressed as a 32bit lanemask.
The current code only keeps registers in the live-in list and therefore
enumerated all subregisters affected by the lanemask. This turned out to
be too conservative as the subregister may also cover additional parts
of the lanemask which are not live. Expressing a given lanemask by
enumerating a minimum set of subregisters is computationally expensive
so the best solution is to simply change the live-in list to store the
lanemasks as well. This will reduce memory usage for targets using
subregister liveness and slightly increase it for other targets
Differential Revision: http://reviews.llvm.org/D12442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247171 91177308-0d34-0410-b5e6-96231b3b80d8
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246235 91177308-0d34-0410-b5e6-96231b3b80d8
This is friendlier to the readers as it makes it clear that the API is
not meant for vregs but just for physregs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245977 91177308-0d34-0410-b5e6-96231b3b80d8
Apparently std::vector::erase(const_iterator) (as opposed to the
non-const iterator) is a part of C++11 but it seems this is not available
on all the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245900 91177308-0d34-0410-b5e6-96231b3b80d8
1. Create a utility function normalizeEdgeWeights() in MachineBranchProbabilityInfo that normalizes a list of edge weights so that the sum of then can fit in uint32_t.
2. Provide an interface in MachineBasicBlock to normalize its successors' weights.
3. Add a flag in MachineBasicBlock that tracks whether its successors' weights are normalized.
4. Provide an overload of getSumForBlock that accepts a non-const pointer to a MBB so that it can force normalizing this MBB's successors' weights.
5. Update several uses of getSumForBlock() by eliminating the once needed weight scale.
Differential Revision: http://reviews.llvm.org/D11442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244154 91177308-0d34-0410-b5e6-96231b3b80d8
Push `ModuleSlotTracker` through `MachineOperand`s, dropping the time
for `llc -print-machineinstrs` on the testcase in PR23865 from ~13
seconds to ~9 seconds. Now `SlotTracker::processFunctionMetadata()`
accounts for only 8% of the runtime, which seems reasonable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240845 91177308-0d34-0410-b5e6-96231b3b80d8
Expose enough of the IR-level `SlotTracker` so that
`MachineFunction::print()` can use a single one for printing
`BasicBlock`s. Next step would be to lift this through a few more APIs
so that we can make other print methods faster.
Fixes PR23865, changing the runtime of `llc -print-machineinstrs` from
many minutes (killed after 3 minutes, but it wasn't very close) to
13 seconds for a 502185 line dump.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240842 91177308-0d34-0410-b5e6-96231b3b80d8
- Clean documentation comment
- Change the API to accept an iterator so you can actually pass
MachineBasicBlock::end() now.
- Add more "const".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238288 91177308-0d34-0410-b5e6-96231b3b80d8
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230710 91177308-0d34-0410-b5e6-96231b3b80d8
In resent times asan and valgrind have found way more memory management bugs
in llvm than the special purpose leak detector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224703 91177308-0d34-0410-b5e6-96231b3b80d8
Since `MachineInstr` is required to have a trivial destructor, it cannot
remove itself from `LeakDetection`. Remove the calls.
As it happens, this requirement is because `MachineFunction` allocates
all `MachineInstr`s in a custom allocator; when the `MachineFunction` is
destroyed they're dropped of the edge. There's no benefit to detecting
leaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224061 91177308-0d34-0410-b5e6-96231b3b80d8
Use the MCAsmInfo instead of the DataLayout, and allow
specifying a custom prefix for labels specifically. HSAIL
requires that labels begin with @, but global symbols with &.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223323 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
critical edge has been split. The MachineDominatorTree will when lazy update the
underlying dominance properties when require.
** Context **
This is a follow-up of r215410.
Each time a critical edge is split this invalidates the dominator tree
information. Thus, subsequent queries of that interface will be slow until the
underlying information is actually recomputed (costly).
** Problem **
Prior to this patch, splitting a critical edge needed to query the dominator
tree to update the dominator information.
Therefore, splitting a bunch of critical edges will likely produce poor
performance as each query to the dominator tree will use the slow query path.
This happens a lot in passes like MachineSink and PHIElimination.
** Proposed Solution **
Splitting a critical edge is a local modification of the CFG. Moreover, as soon
as a critical edge is split, it is not critical anymore and thus cannot be a
candidate for critical edge splitting anymore. In other words, the predecessor
and successor of a basic block inserted on a critical edge cannot be inserted by
critical edge splitting.
Using these observations, we can pile up the splitting of critical edge and
apply then at once before updating the DT information.
The core of this patch moves the update of the MachineDominatorTree information
from MachineBasicBlock::SplitCriticalEdge to a lazy MachineDominatorTree.
** Performance **
Thanks to this patch, the motivating example compiles in 4- minutes instead of
6+ minutes. No test case added as the motivating example as nothing special but
being huge!
The binaries are strictly identical for all the llvm test-suite + SPECs with and
without this patch for both Os and O3.
Regarding compile time, I observed only noise, although on average I saw a
small improvement.
<rdar://problem/17894619>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215576 91177308-0d34-0410-b5e6-96231b3b80d8