Summary:
These directives are used to toggle whether the assembler accepts MSA-specific instructions or not.
Patch by Matheus Almeida and Toma Tabacu.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4783
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215099 91177308-0d34-0410-b5e6-96231b3b80d8
shuffle lowering.
This is closely related to the previous one. Here we failed to use the
source offset when swapping in the other case -- where we end up
swapping the *final* shuffle. The cause of this bug is a bit different:
I simply wasn't thinking about the fact that this mask is actually
a slice of a wide mask and thus has numbers that need SourceOffset
applied. Simple fix. Would be even more simple with an algorithm-y thing
to use here, but correctness first. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215095 91177308-0d34-0410-b5e6-96231b3b80d8
via the fuzz tester.
Here I missed an offset when round-tripping a value through a shuffle
mask. I got it right 2 lines below. See a problem? I do. ;] I'll
probably be adding a little "swap" algorithm which accepts a range and
two values and swaps those values where they occur in the range. Don't
really have a name for it, let me know if you do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215094 91177308-0d34-0410-b5e6-96231b3b80d8
through the new fuzzer.
This one is great: bad operator precedence led the modulus to happen at
the wrong point. All the asserts didn't fire because there were usually
the right values past the end of the 4 element region we were looking
at. Probably could have gotten a crash here with ASan + fuzzing, but the
correctness tests pinpointed this really nicely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215092 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Since pointers are 32-bit on x32 we can use ebp and esp as frame and stack
pointer. Some operations like PUSH/POP and CFI_INSTRUCTION still
require 64-bit register, so using 64-bit MachineFramePtr where required.
X86_64 NaCl uses 64-bit frame/stack pointers, however it's been found that
both isTarget64BitLP64 and isTarget64BitILP32 are true for NaCl. Addressing
this issue here as well by making isTarget64BitLP64 false.
Also mark hasReservedSpillSlot unreachable on X86. See inlined comments.
Test Plan: Add one new simple test and upgrade 2 existing with x32 target case.
Reviewers: nadav, dschuff
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D4617
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215091 91177308-0d34-0410-b5e6-96231b3b80d8
fuzz testing.
The function which tested for adjacency did what it said on the tin, but
when I called it, I wanted it to do something more thorough: I wanted to
know if the *pairs* of shuffle elements were adjacent and started at
0 mod 2. In one place I had the decency to try to test for this, but in
the other it was completely skipped, miscompiling this test case. Fix
this by making the helper actually do what I wanted it to do everywhere
I called it (and removing the now redundant code in one place).
I *really* dislike the name "canWidenShuffleElements" for this
predicate. If anyone can come up with a better name, please let me know.
The other name I thought about was "canWidenShuffleMask" but is it
really widening the mask to reduce the number of lanes shuffled? I don't
know. Naming things is hard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215089 91177308-0d34-0410-b5e6-96231b3b80d8
It also allows nested { } expressions, as now that they are sized, we can merge pull bits from the nested value.
In the current behaviour, everything in { } must have been convertible to a single bit.
However, now that binary literals are sized, its useful to be able to initialize a range of bits.
So, for example, its now possible to do
bits<8> x = { 0, 1, { 0b1001 }, 0, 0b0 }
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215086 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful in a later patch where binary literals such as 0b000 will become BitsInit values instead of IntInit values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215085 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of these becoming an integer literal internally, they now become bits<n> values.
Prior to this change, 0b001 was 1 bit long. This is confusing as clearly the user gave 3 bits.
This new type holds both the literal value and the size, and so can ensure sizes match on initializers.
For example, this used to be legal
bits<1> x = 0b00;
but now it must be written as
bits<2> x = 0b00;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215084 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this change, it was legal to do something like
bits<2> opc = { 0, 1 };
bits<2> opc2 = { 1, 0 };
bits<2> a = { opc, opc2 };
This involved silently dropping bits from opc and opc2 which is very hard to debug.
Now the above test would be an error. Having tested with an assert, none of LLVM/clang was relying on this behaviour.
Thanks to Adam Nemet for the above test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215083 91177308-0d34-0410-b5e6-96231b3b80d8
The commit after this changes { } and 0bxx literals to be of type bits<n> and not int. This means we need to write exactly the right number of bits, and not rely on the values being silently zero extended for us.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215082 91177308-0d34-0410-b5e6-96231b3b80d8
within a single bit-width of vectors. This is particularly useful for
when you know you have bugs in a certain area and want to find simpler
test cases than those produced by an open-ended fuzzing that ends up
legalizing the vector in addition to shuffling it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215056 91177308-0d34-0410-b5e6-96231b3b80d8
This is a python script which for a given seed generates a random
sequence of random shuffles of a random vector width. It embeds this
into a function and emits a main function which calls the test routine
and checks that the results (where defined) match the obvious results.
I'll be using this to drive out miscompiles from the new vector shuffle
logic now that it is clean of any crashes I can find with llvm-stress.
Note, my python skills are very poor. Sorry if this is terrible code,
and feel free to tell me how I should write this or just patch it as
necessary.
The tests generated try to be very portable and use boring C routines.
It technically will mis-declare the C routines and pass 32-bit integers
to parametrs that expect 64-bit integers. If someone wants to fix this
and has less terrible ideas of how to do it, I'm all ears. Fortunately,
this "just works" for x86. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215054 91177308-0d34-0410-b5e6-96231b3b80d8
mach-o doesn't like sections without segments, and elf is perfectly
happy with commas in section names, so use a Darwin-like section name.
Suggestion by Eric Christopher.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215052 91177308-0d34-0410-b5e6-96231b3b80d8
This changes Win64EHEmitter into a utility WinEH UnwindEmitter that can be
shared across multiple architectures and a target specific bit which is
overridden (Win64::UnwindEmitter). This enables sharing the section selection
code across X86 and the intended use in ARM for emitting unwind information for
Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215050 91177308-0d34-0410-b5e6-96231b3b80d8
Also make the disassembler created with the Mach-O parser (the -m option)
pick up the Target specific attributes specified with -mattr option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215032 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR18916. I don't think we need to implement support for either
hybrid syntax. Nobody should write Intel assembly with '%' prefixes on
their registers or AT&T assembly without them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215031 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r214761.
Revert while Reid investigates & provides a reproduction for an
assertion failure for this on Windows.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214999 91177308-0d34-0410-b5e6-96231b3b80d8
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214988 91177308-0d34-0410-b5e6-96231b3b80d8
In r210492 the logic of calculateDbgValueHistory was changed to end
register variable live ranges at the end of MBB conditionally on
the fact that the register was or not clobbered by the function body.
This requires an initial scan of all the operands of the function
to collect all clobbered registers. In a second pass over all
instructions, we compare this set with the set of clobbered
registers for the current MachineInstruction. This modification
incurred a compilation time regression on some benchmarks: the
debug info emission phase takes ~10% more time.
While a small performance hit is unavoidable due to the initial
scan requirement, we can improve the situation by avoiding to
create too many temporary sets and just use lambdas to work directly
on the result of the initial scan.
Fixes <rdar://problem/17884104>
Patch by Frederic Riss!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214987 91177308-0d34-0410-b5e6-96231b3b80d8
The handling of the epilogue is best expressed as an early exit and
there is no reason to look for register defs in DbgValue MIs.
Patch by Frederic Riss!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214986 91177308-0d34-0410-b5e6-96231b3b80d8
Originally this test case tested the specified behavior (that -gmlt
would not produce DW_AT_ranges and that when no CU DW_AT_ranges were
produced, no debug_ranges section (not even an empty list) would be
produced) but then the ranges emission code was improved not to create
ranges of a single element (instead favoring high_pc/low_pc) and so this
test case no longer exercised the -gmlt portion of the behavior.
This caused me some confusion when reading the comments and trying to
update this test case for future changes to -gmlt. I've made this test
resilient to those changes (by using the {{DW_TAG|NULL}} pattern to
block the end of the attribute search at the end of the CU's attribute
list without mandating that it must (or must not) be followed by another
tag (the future changes to -gmlt should produce no subprograms in this
CU))
Fix the test case to have two functions in distinct sections to force
the use of DW_AT_ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214985 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise we can end up with an argument frame size that is not a
multiple of stack slot size, which is very awkward.
This fixes PR20547, which was a bug in x86_64 Sys V vararg handling.
However, it's much easier to test this with x86 callee-cleanup
functions, which previously ended in "retl $6" instead of "retl $8".
This does affect behavior of all backends, but it presumably fixes the
same bug in all of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214980 91177308-0d34-0410-b5e6-96231b3b80d8
I initially used a `SmallVector<>` for `UseListOrder::Shuffle`, which
was a silly choice. When I realized my error I quickly rolled a custom
data structure.
This commit simplifies it to a `std::vector<>`. Now that I've had a
chance to measure performance, this data structure isn't part of a
bottleneck, so the additional complexity is unnecessary.
This is part of PR5680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214979 91177308-0d34-0410-b5e6-96231b3b80d8
For triple aarch64-linux-gnu we were incorrectly setting IRIX.
For triple aarch64 we are correctly setting SYSV.
Patch by Ana Pazos <apazos@codeaurora.org>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214974 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses 2 FIXME comments that I added to CriticalAntiDepBreaker while fixing PR20020.
Initialize an MCSubRegIterator and an MCRegAliasIterator to include the self reg.
Assuming that works as advertised, there should be functional difference with this patch, just less code.
Also, remove the associated asserts - we're setting those values just before, so the asserts don't do anything meaningful.
Differential Revision: http://reviews.llvm.org/D4566
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214973 91177308-0d34-0410-b5e6-96231b3b80d8
This swaps the order of the loop vectorizer and the SLP/BB vectorizers. It is disabled by default so we can do performance testing - ideally we want to change to having the loop vectorizer running first, and the SLP vectorizer using its leftovers instead of the other way around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214963 91177308-0d34-0410-b5e6-96231b3b80d8
Particularly on MachO, we were generating "blx _dest" instructions on M-class
CPUs, which don't actually exist. They happen to get fixed up by the linker
into valid "bl _dest" instructions (which is why such a massive issue has
remained largely undetected), but we shouldn't rely on that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214959 91177308-0d34-0410-b5e6-96231b3b80d8