The main complication here is that TM and TMY (the memory forms) set
CC differently from the register forms. When the tested bits contain
some 0s and some 1s, the register forms set CC to 1 or 2 based on the
value the uppermost bit. The memory forms instead set CC to 1
regardless of the uppermost bit.
Until now, I've tried to make it so that a branch never tests for an
impossible CC value. E.g. NR only sets CC to 0 or 1, so branches on the
result will only test for 0 or 1. Originally I'd tried to do the same
thing for TM and TMY by using custom matching code in ISelDAGToDAG.
That ended up being very ugly though, and would have meant duplicating
some of the chain checks that the common isel code does.
I've therefore gone for the simpler alternative of adding an extra
operand to the TM DAG opcode to say whether a memory form would be OK.
This means that the inverse of a "TM;JE" is "TM;JNE" rather than the
more precise "TM;JNLE", just like the inverse of "TMLL;JE" is "TMLL;JNE".
I suppose that's arguably less confusing though...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190400 91177308-0d34-0410-b5e6-96231b3b80d8
TAG_friend are updated to use scope reference.
Added testing cases to verify that class with inheritance can be uniqued.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190364 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM IR doesn't currently allow atomic bool load/store operations, and the
transformation is dubious anyway because it isn't profitable on all platforms.
PR17163.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190357 91177308-0d34-0410-b5e6-96231b3b80d8
Several architectures use the same instruction to perform both a comparison and
a subtract. The instruction selection framework does not allow to consider
different basic blocks to expose such fusion opportunities.
Therefore, these instructions are “merged” by CSE at MI IR level.
To increase the likelihood of CSE to apply in such situation, we reorder the
operands of the comparison, when they have the same complexity, so that they
matches the order of the most frequent subtract.
E.g.,
icmp A, B
...
sub B, A
<rdar://problem/14514580>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190352 91177308-0d34-0410-b5e6-96231b3b80d8
In DIBuilder, the context field of a TAG_member is updated to use the
scope reference. Verifier is updated accordingly.
DebugInfoFinder now needs to generate a type identifier map to have
access to the actual scope. Same applies for BreakpointPrinter.
processModule of DebugInfoFinder is called during initialization phase
of the verifier to make sure the type identifier map is constructed early
enough.
We are now able to unique a simple class as demonstrated by the added
testing case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190334 91177308-0d34-0410-b5e6-96231b3b80d8
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190328 91177308-0d34-0410-b5e6-96231b3b80d8
IT blocks can only be one instruction lonf, and can only contain a subset of
the 16 instructions.
Patch by Artyom Skrobov!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190309 91177308-0d34-0410-b5e6-96231b3b80d8
Fix XCoreLowerThreadLocal trying to initialise globals
which have no initializer.
Add handling of const expressions containing thread local variables.
These need to be replaced with instructions, as the thread ID is
used to access the thread local variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190300 91177308-0d34-0410-b5e6-96231b3b80d8
This sidesteps a bug in PrescheduleNodesWithMultipleUses() which
does not check if callResources will be affected by the transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190299 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190235 91177308-0d34-0410-b5e6-96231b3b80d8
functions marked 'nobuiltin'. That approach doesn't play well with LTO, and
there's no harm in marking a call as 'builtin' if it was going to be a builtin
regardless.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190233 91177308-0d34-0410-b5e6-96231b3b80d8
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190205 91177308-0d34-0410-b5e6-96231b3b80d8
field of DICompositeType.
This will help the follow-on patch of using DITypeRef for containing-type field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190187 91177308-0d34-0410-b5e6-96231b3b80d8
Occasionally DAGCombiner can spot that a SETCC operation is completely
redundant and reduce it to "all true" or "all false". If this happens to a
vector, the value produced has to take account of what a normal comparison
would have produced, which may be an all-1s bitmask.
The fix in SelectionDAG.cpp is tested, however, as far as I can see the code in
TargetLowering.cpp is possibly unreachable and almost certainly irrelevant when
triggered so there are no tests. However, I believe it's still clearly the
right change and may save someone else some hassle if it suddenly becomes
reachable. So I'm doing it anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190147 91177308-0d34-0410-b5e6-96231b3b80d8
The architecture has many comparison instructions, including some that
extend one of the operands. The signed comparison instructions use sign
extensions and the unsigned comparison instructions use zero extensions.
In cases where we had a free choice between signed or unsigned comparisons,
we were trying to decide at lowering time which would best fit the available
instructions, taking things like extension type into account. The code
to do that was getting increasingly hairy and was also making some bad
decisions. E.g. when comparing the result of two LLCs, it is better to use
CR rather than CLR, since CR can be fused with a branch while CLR can't.
This patch removes the lowering code and instead adds an operand to
integer comparisons to say whether signed comparison is required,
whether unsigned comparison is required, or whether either is OK.
We can then leave the choice of instruction up to the normal isel code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190138 91177308-0d34-0410-b5e6-96231b3b80d8
If the DAG already has only legal types, then the second round of DAG combines
is skipped. In this case VSELECT+SETCC patterns that match a more efficient
instruction (e.g. min/max) are never recognized.
This fix allows VSELECT+SETCC combines if the types are already legal before DAG
type legalization.
Reviewer: Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190105 91177308-0d34-0410-b5e6-96231b3b80d8
expression uses an assembler temporary symbol from an assignment. In this case
the symbol does not have a fragment so the use of getFragment() would be NULL
and caused a crash. In the case of an assembler temporary symbol we want to use
the AliasedSymbol (if any) which will create a local relocation entry, but if
it is not an assembler temporary symbol then let it use that symbol with an
external relocation entry.
rdar://9356266
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190096 91177308-0d34-0410-b5e6-96231b3b80d8
ptr_to_member.
We introduce a new class DITypeRef that represents a reference to a DIType.
It wraps around a Value*, which can be either an identifier in MDString
or an actual MDNode. The class has a helper function "resolve" that
finds the actual MDNode for a given DITypeRef.
We specialize getFieldAs to return a field that is a reference to a
DIType. To correctly access the base type field of ptr_to_member,
getClassType now calls getFieldAs<DITypeRef> to return a DITypeRef.
Also add a typedef for DITypeIdentifierMap and a helper
generateDITypeIdentifierMap in DebugInfo.h. In DwarfDebug.cpp, we keep
a DITypeIdentifierMap and call generateDITypeIdentifierMap to actually
populate the map.
Verifier is updated accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190081 91177308-0d34-0410-b5e6-96231b3b80d8