The function was making too many assumptions about its input:
1. The NEON_VDUP optimisation was far too aggressive, assuming (I
think) that the input would always be BUILD_VECTOR.
2. We were treating most unknown concats as legal (by returning Op
rather than SDValue()). I think only concats of pairs of vectors are
actually legal.
http://llvm.org/PR19094
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203450 91177308-0d34-0410-b5e6-96231b3b80d8
as well. I don't see any particular need but it imposes no cost to
support it and it makes the API cleaner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203448 91177308-0d34-0410-b5e6-96231b3b80d8
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203437 91177308-0d34-0410-b5e6-96231b3b80d8
constructors from the classes which only have a single reference member
to many other places. This resulted in them copying their single member
instead of moving. =/ Fix this.
There's really not a useful test to add sadly because these move
constructors are only called when something deep inside some standard
library implementation *needs* to move them. Many of the types aren't
even user-impacting types. Or, the objects are copyable anyways and so
the result was merely a performance problem rather than a correctness
problem.
Anyways, thanks for the review. And this is a great example of why
I wish I colud have the compiler write these for me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203431 91177308-0d34-0410-b5e6-96231b3b80d8
Split by comma once instead of multiple times. Moving this upfront
makes the rest of the code considerably simpler.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203429 91177308-0d34-0410-b5e6-96231b3b80d8
synthesize a move constructor. Thus, for any types where move semantics
are important (yea, that's essentially every type...) you must
explicitly define the special members. Do so systematically throughout
the pass manager as the core of the design relies heavily on move
semantics.
This will hopefully fix the build with MSVC 2013. We still don't know
why MSVC 2012 accepted this code, but it almost certainly wasn't doing
the right thing.
I've also added explicit to a few single-argument constructors spotted
in passing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203426 91177308-0d34-0410-b5e6-96231b3b80d8
it is available. Also make the move semantics sufficiently correct to
tolerate move-only passes, as the PassManagers *are* move-only passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203391 91177308-0d34-0410-b5e6-96231b3b80d8
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:
- Attributes which have parenthesized arguments are never preceded by
commas. This form of attribute is the only one which ever has
optional arguments. However, not all of these attributes support
optional arguments: 'thread_local' supports an optional argument but
'addrspace' does not. Interestingly, 'addrspace' is documented as
being a "qualifier". What constitutes a qualifier? I cannot find a
definition.
- Some attributes use a space between the keyword and the value.
Examples of this form are 'align' and 'section'. These are always
preceded by a comma.
- Otherwise, the attribute has no argument. These attributes do not
have a preceding comma.
Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type. 'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.
With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type. Unlike the current formulation, there would be no preceding
comma. The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203376 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r203374.
Ambiguities in assign... oh well. I'm just going to revert this and
probably not try to recommit it as it's not terribly important.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203375 91177308-0d34-0410-b5e6-96231b3b80d8
Move a common utility (assign(iter, iter)) into SmallVector (some of the
others could be moved there too, but this one seemed particularly
generic) and replace repetitions overrides with using directives.
And simplify SmallVector::assign(num, element) while I'm here rather
than thrashing these files (that cause everyone to rebuild) again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203374 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC (2012, 2013, 2013 Nov CTP) fail on the following code:
int main() {
int arr[] = {1, 2};
for (int i : arr)
do {} while (0);
}
The fix is to put {} around the for loop. I've reported this to the MSVC
team.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203371 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
relevant subclasses of RuntimeDyldImpl. This allows construction of
RuntimeDyldImpl instances to be deferred until after the target architecture is
known.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203352 91177308-0d34-0410-b5e6-96231b3b80d8