Cleanup only: no functional change.
This patch makes RuntimeDyldMachO targets directly responsible for decoding
immediates, rather than letting them implement catch a callback from generic
code. Since this is a very target specific operation, it makes sense to let the
target-specific code drive it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215255 91177308-0d34-0410-b5e6-96231b3b80d8
I accidentally also used INC/DEC for unsigned arithmetic which doesn't work,
because INC/DEC don't set the required flag which is used for the overflow
check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215237 91177308-0d34-0410-b5e6-96231b3b80d8
std::map invalidates the iterator to any element that gets deleted, which means
we can't increment it correctly afterwards. This was causing Darwin test
failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215233 91177308-0d34-0410-b5e6-96231b3b80d8
This turned up a bug in clang where arguments were emitted with
duplicate argument numbers (see r215227).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215228 91177308-0d34-0410-b5e6-96231b3b80d8
floating point exceptions, added use of flag to fold potentially exception
raising floating point math in selection DAG. No functionality change, as
targets have to explicitly ask for this behavior and none does today.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215222 91177308-0d34-0410-b5e6-96231b3b80d8
Also added the testcase that should have been in r215194.
This behaviour has surprised me a few times now. The problem is that the
generated MipsSubtarget::ParseSubtargetFeatures() contains code like this:
if ((Bits & Mips::FeatureABICalls) != 0) IsABICalls = true;
so '-abicalls' means 'leave it at the default' and '+abicalls' means 'set it to
true'. In this case, (and the similar -modd-spreg case) I'd like the code to be
IsABICalls = (Bits & Mips::FeatureABICalls) != 0;
or possibly:
if ((Bits & Mips::FeatureABICalls) != 0)
IsABICalls = true;
else
IsABICalls = false;
and preferably arrange for 'Bits & Mips::FeatureABICalls' to be true by default
(on some triples).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215211 91177308-0d34-0410-b5e6-96231b3b80d8
For best-case performance on Cortex-A57, we should try to use a balanced mix of odd and even D-registers when performing a critical sequence of independent, non-quadword FP/ASIMD floating-point multiply or multiply-accumulate operations.
This pass attempts to detect situations where the register allocation may adversely affect this load balancing and to change the registers used so as to better utilize the CPU.
Ideally we'd just take each multiply or multiply-accumulate in turn and allocate it alternating even or odd registers. However, multiply-accumulates are most efficiently performed in the same functional unit as their accumulation operand. Therefore this pass tries to find maximal sequences ("Chains") of multiply-accumulates linked via their accumulation operand, and assign them all the same "color" (oddness/evenness).
This optimization affects S-register and D-register floating point multiplies and FMADD/FMAs, as well as vector (floating point only) muls and FMADD/FMA. Q register instructions (and 128-bit vector instructions) are not affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215199 91177308-0d34-0410-b5e6-96231b3b80d8
ARM bots (& others, I think, now that I look) were failing because we
were using incorrect printf-style format specifiers. They were wrong
on almost any platform, actually, just mostly harmlessly so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215196 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalOpt didn't know how to simulate InsertValueInst or
ExtractValueInst. Optimizing these is pretty straightforward.
N.B. This came up when looking at clang's IRGen for MS ABI member
pointers; they are represented as aggregates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215184 91177308-0d34-0410-b5e6-96231b3b80d8
This completes one item from the todo-list of r215125 "Generate masking
instruction variants with tablegen".
The AddedComplexity is needed just like for the k variant.
Added a codegen test based on valignq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215173 91177308-0d34-0410-b5e6-96231b3b80d8
The AddedComplexity is needed just like in avx512_perm_3src. There may be a
bug in the complexity computation...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215168 91177308-0d34-0410-b5e6-96231b3b80d8
__stack_chk_guard.
Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.
%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)
Original test case provided by Ana Pazos.
This fixes PR20558.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215167 91177308-0d34-0410-b5e6-96231b3b80d8
Due to an unnecessary special case, inlined arguments that happened to
be from the same function as they were inlined into were misclassified
as non-inline arguments and would overwrite the non-inlined arguments.
Assert that we never overwrite a function's arguments, and stop
misclassifying inlined arguments as non-inline arguments to fix this
issue.
Excuse the rather crappy test case - handcrafted IR might do better, or
someone who understands better how to tickle the inliner to create a
recursive inlining situation like this (though it may also be necessary
to tickle the variable in a particular way to cause it to be recorded in
the MMI side table and go down this particular path for location
information).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215157 91177308-0d34-0410-b5e6-96231b3b80d8