After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
is constant we can change all variables with constants in the same BasicBlock
http://reviews.llvm.org/D11918
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245265 91177308-0d34-0410-b5e6-96231b3b80d8
WebAssembly doesn't yet have a specified binary format, and it may not
end up being ELF, so we don't want the Triple class defaulting to ELF
for it at this time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245254 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new function TargetFrameLowering::alignSPAdjust
and calls it from TargetInstrInfo::getSPAdjust. It fixes PR24142.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245253 91177308-0d34-0410-b5e6-96231b3b80d8
The arch prefix string isn't currently being used for anything on
WebAssembly, but if it were to be used, it makes sense to use the
same arch prefix string for wasm32 and wasm64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245252 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible to be in a situation where more than one funclet token is
a valid SSA value. If we see a terminator which exits a funclet which
doesn't use the funclet's token, replace it with unreachable.
Differential Revision: http://reviews.llvm.org/D12074
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245238 91177308-0d34-0410-b5e6-96231b3b80d8
Primary purpose of this change is to reuse existing code inside findExistingExpansion. However it introduces very slight semantic change - findExistingExpansion now looks into exiting blocks instead of a loop latches. Originally heuristic was based on the fact that we want to look at the loop exit conditions. And since all exiting latches will be listed in the ExitingBlocks, heuristic stays roughly the same.
Differential Revision: http://reviews.llvm.org/D12008
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245227 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Increase the estimated costs for insert/extract element operations on
AArch64. This is motivated by results from benchmarking interleaved
accesses.
Add missing costs for zext/sext/trunc instructions and some integer to
floating point conversions. These costs were previously calculated
by scalarizing these operation and were affected by the cost increase of
the insert/extract element operations.
Reviewers: rengolin
Subscribers: mcrosier, aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11939
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245226 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change limits the minimum cost of an insert/extract
element operation to 2 in cases where this would result
in mixing of NEON and VFP code.
Reviewers: rengolin
Subscribers: mssimpso, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12030
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245225 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a virtual `peekTokens()` function to `MCAsmLexer`
which can peek forward an arbitrary number of tokens.
It also makes the `peekTok()` method call `peekTokens()` method, but
only requesting one token.
The idea is to better support targets which more more ambiguous
assembly syntaxes.
Patch by Dylan McKay!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245221 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When demoting an SSA value that has a use on a phi and one of the phi's
predecessors terminates with catchret, the edge needs to be split and the
load inserted in the new block, else we'll still have a cross-funclet SSA
value.
Add a test for this, and for the similar case where a def to be spilled is
on and invoke and a critical edge, which was already implemented but
missing a test.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245218 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: It is the same as LA, except that it can also load 64-bit addresses and it only works on 64-bit MIPS architectures.
Reviewers: tomatabacu, seanbruno, vkalintiris
Subscribers: brooks, seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D9524
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245208 91177308-0d34-0410-b5e6-96231b3b80d8
These only get generated if the target supports them. If one of the variants is not legal and the other is, and it is safe to do so, the other variant will be emitted.
For example on AArch32 (V8), we have scalar fminnm but not fmin.
Fix up a couple of tests while we're here - one now produces better code, and the other was just plain wrong to start with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245196 91177308-0d34-0410-b5e6-96231b3b80d8
PR24469 resulted because DeleteDeadInstruction in handleNonLocalStoreDeletion was
deleting the next basic block iterator. Fixed the same by resetting the basic block iterator
post call to DeleteDeadInstruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245195 91177308-0d34-0410-b5e6-96231b3b80d8
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245193 91177308-0d34-0410-b5e6-96231b3b80d8
This is a very minimal move support - it leaves the moved-from object in
a zombie state that is only valid for destruction and move assignment.
This seems fine to me, and leaving it in the default constructed state
would require adding more state to the object and potentially allocating
memory (!!!) and so seems like a Bad Idea.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245192 91177308-0d34-0410-b5e6-96231b3b80d8
Bitwise arithmetic can obscure a simple sign-test. If replacing the
mask with a truncate is preferable if the type is legal because it
permits us to rephrase the comparison more explicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245171 91177308-0d34-0410-b5e6-96231b3b80d8
analysis ...
It turns out that we *do* need the old CallGraph ported to the new pass
manager. There are times where this model of a call graph is really
superior to the one provided by the LazyCallGraph. For example,
GlobalsModRef very specifically needs the model provided by CallGraph.
While here, I've tried to make the move semantics actually work. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245170 91177308-0d34-0410-b5e6-96231b3b80d8
We can set additional bits in a mask given that we know the other
operand of an AND already has some bits set to zero. This can be more
efficient if doing so allows us to use an instruction which implicitly
sign extends the immediate.
This fixes PR24085.
Differential Revision: http://reviews.llvm.org/D11289
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245169 91177308-0d34-0410-b5e6-96231b3b80d8
ByteSize and BitSize should not be size_t but unsigned, considering
1) They are at most 2^16 and 2^19, respectively.
2) BitSize is an argument to Type::getIntNTy which takes unsigned.
Also, use the correct utostr instead itostr and cache the string result.
Thanks to James Touton for reporting this!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245167 91177308-0d34-0410-b5e6-96231b3b80d8