On x86_64 this brings it from 80 bytes to 64 bytes. Also make any member
variables private and clean up uses to go through the existing accessors.
NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219573 91177308-0d34-0410-b5e6-96231b3b80d8
This is a small targeted fix for pr20119. The code needs quiet a bit of
refactoring and I added some FIXMEs about it, but I want to get the testcase
passing first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212101 91177308-0d34-0410-b5e6-96231b3b80d8
User may initialize a var with non-zero value and specify .bss section.
E.g. : int a __attribute__((section(".bss"))) = 2;
This patch converts an assertion to error report for better user
experience.
Differential Revision: http://reviews.llvm.org/D4199
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211455 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies ELFObjectWriter::SymbolValue a bit more. This new version
will also be used in the COFF writer to fix pr19147.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207711 91177308-0d34-0410-b5e6-96231b3b80d8
This patch centralizes the handling of the thumb bit around
MCStreamer::isThumbFunc and makes isThumbFunc handle aliases.
This fixes a corner case, but the main advantage is having just one
way to check if a MCSymbol is thumb or not. This should still be
refactored to be ARM only, but at least now it is just one predicate
that has to be refactored instead of 3 (isThumbFunc,
ELF_Other_ThumbFunc, and SF_ThumbFunc).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207522 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all the header #include lines. This updates most of the
miscellaneous other lib/... directories. A few left though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206845 91177308-0d34-0410-b5e6-96231b3b80d8
To support compression for debug_line and debug_frame a different
approach is required. To simplify review, revert the old implementation
and XFAIL the test case. New implementation to follow shortly.
Reverts r205059 and r204958.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205989 91177308-0d34-0410-b5e6-96231b3b80d8
Another part of the ARM64 backend (so tests will be following soon).
This is currently used by the linker to relax adrp/ldr pairs into nops
where possible, though could well be more broadly applicable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205084 91177308-0d34-0410-b5e6-96231b3b80d8
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205076 91177308-0d34-0410-b5e6-96231b3b80d8
1) When creating a .debug_* section and instead create a .zdebug_
section.
2) When creating a fragment in a .zdebug_* section, make it a compressed
fragment.
3) When computing the size of a compressed section, compress the data
and use the size of the compressed data.
4) Emit the compressed bytes.
Also, check that only if a section has a compressed fragment, then that
is the only fragment in the section.
Assert-fail if the fragment's data is modified after it is compressed.
Initial review on llvm-commits by Eric Christopher and Rafael Espindola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204958 91177308-0d34-0410-b5e6-96231b3b80d8
Allow object files to be tagged with a version-min load command for iOS
or MacOSX.
Teach macho-dump to understand the version-min load commands for
testcases.
rdar://11337778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204190 91177308-0d34-0410-b5e6-96231b3b80d8
When printing assembly we don't have a Layout object, but we can still
try to fold some constants.
Testcase by Ulrich Weigand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203677 91177308-0d34-0410-b5e6-96231b3b80d8
I've been comparing the object file output of LLVM's integrated
assembler against the external assembler on PowerPC, and one
area where differences still remain are in DWARF sections.
In particular, the GNU assembler generates .debug_frame and
.debug_line sections using a code alignment factor of 4, since
all PowerPC instructions have size 4 and must be aligned to a
multiple of 4. However, current MC code hard-codes a code
alignment factor of 1.
This patch changes this by adding a "minimum instruction alignment"
data element to MCAsmInfo and using this as code alignment factor.
This requires passing a MCContext into MCDwarfLineAddr::Encode
and MCDwarfLineAddr::EncodeAdvanceLoc. Note that one caller,
MCDwarfLineAddr::Write, didn't actually have that information
available. However, it turns out that this routine is in fact
never used in the whole code base, so the patch simply removes
it. If it turns out to be needed again at a later time, it
could be re-added with an updated interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183834 91177308-0d34-0410-b5e6-96231b3b80d8
I have some uncommitted changes to the cast code that catch this sort of thing
at compile-time but I still need to do some other cleanup before I can enable
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174853 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when a fragment is relaxed, its size is modified, but its
offset is not (it gets laid out as a side effect of checking whether
it needs relaxation), then all subsequent fragments are invalidated
because their offsets need to change. When bundling is enabled,
relaxed fragments need to get laid out again, because the increase in
size may push it over a bundle boundary. So instead of only
invalidating subsequent fragments, also invalidate the fragment that
gets relaxed, which causes it to get laid out again.
This patch also fixes some trailing whitespace and fixes the
bundling-related debug output of MCFragments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174401 91177308-0d34-0410-b5e6-96231b3b80d8
and update ELF header e_flags.
Currently gathering information such as symbol,
section and data is done by collecting it in an
MCAssembler object. From MCAssembler and MCAsmLayout
objects ELFObjectWriter::WriteObject() forms and
streams out the ELF object file.
This patch just adds a few members to the MCAssember
class to store and access the e_flag settings. It
allows for runtime additions to the e_flag by
assembler directives. The standalone assembler can
get to MCAssembler from getParser().getStreamer().getAssembler().
This patch is the generic infrastructure and will be
followed by patches for ARM and Mips for their target
specific use.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173882 91177308-0d34-0410-b5e6-96231b3b80d8
into which we can emit single instructions without fixups (which is most
instructions). This is an optimization required because MCDataFragment
is prety large (240 bytes on x64), with no change in functionality.
For large programs, this reduces memory usage overhead required for bundling
by 40%.
To make the code as palatable as possible, the MCEncodedFragment interface was
further fragmented (no pun intended) and MCEncodedFragmentWithFixups is used
as the interface to work against when the user expects fixups. MCDataFragment
and MCRelaxableFragment implement this interface, while the new
MCCompactEncodedInstFragment implements MCEncodeFragment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172572 91177308-0d34-0410-b5e6-96231b3b80d8
method because getContents().size() already covers it. So computeFragmentSize
can use the generic MCEncodedFragment interface when querying both Data and
Relaxable fragments for contents sizes.
No change in functionality
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171903 91177308-0d34-0410-b5e6-96231b3b80d8
because that method is only getting called for MCInstFragment. These
fragments aren't even generated when RelaxAll is set, which is why the
flag reference here is superfluous. Removing it simplifies the code
with no harmful effects.
An assertion is added higher up to make sure this path is never
reached.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169886 91177308-0d34-0410-b5e6-96231b3b80d8
the assembler. This is useful in order to know how the numbers add up,
since in particular the Align fragments account for a non-trivial
portion of the emitted fragments (especially on -O0 which sets
relax-all).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169747 91177308-0d34-0410-b5e6-96231b3b80d8
SmallString. This makes it possible to use the length-erased SmallVectorImpl
in the interface without imposing buffer size. Thus, the size of MCInstFragment
is back down since a preallocated 8-byte contents buffer is enough.
It would be generally a good idea to rid all the fragments of SmallString as
contents, because a vector just makes more sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169644 91177308-0d34-0410-b5e6-96231b3b80d8