This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.
The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.
I will send an email to llvmdev with instructions on how to use this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192181 91177308-0d34-0410-b5e6-96231b3b80d8
When generating code for shared libraries, even local calls may be
intercepted, so we need a nop after the call for the linker to fix up the
TOC. Test case adapted from the one provided in PR17354.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191440 91177308-0d34-0410-b5e6-96231b3b80d8
When asked to pad an irregular number of bytes, we should fill with
zeros. This is consistent with the behavior specified in the AIX
Assembler Language Reference as well as other LLVM and binutils
assemblers.
N.B. There is a small deviation from binutils' PPC assembler:
when handling pads which are greater than 4 bytes but not mod 4,
binutils will not emit any NOP sequences at all and only use zeros.
This may or may not be a bug but there is no excellent rationale as to
why that behavior is important to emulate. If that behavior is needed,
we can change writeNopData() to behave in the same way.
This fixes PR17352.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191426 91177308-0d34-0410-b5e6-96231b3b80d8
Encodings were checked against the Power ISA documents and double
checked against binutils.
This fixes PR17350.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191419 91177308-0d34-0410-b5e6-96231b3b80d8
The binutils assembler supports a mode called DOLLAR_DOT which treats
the dollar sign token as a reference to the current program counter if
the dollar sign doesn't precede a constant or identifier.
This commit adds a new MCAsmInfo flag stating whether or not a given
target supports this interpretation of the dollar sign token; by
default, this flag is not enabled.
Further, enable this flag for PPC. The system assembler for AIX and
binutils both support using the dollar sign in this manner.
This fixes PR17353.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191368 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.
Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.
This should fix PR15840.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191165 91177308-0d34-0410-b5e6-96231b3b80d8
Pre-increment loads are microcoded on the A2, and the address increment occurs
only after the load completes. As a result, the latency of the GPR address
update is an additional 2 cycles on top of the load latency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191156 91177308-0d34-0410-b5e6-96231b3b80d8
Documenting a design choice to generate only medium model sequences for TLS
addresses at this time. Small and large code models could be supported if
necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190883 91177308-0d34-0410-b5e6-96231b3b80d8
Large code model on PPC64 requires creating and referencing TOC entries when
using the addis/ld form of addressing. This was not being done in all cases.
The changes in this patch to PPCAsmPrinter::EmitInstruction() fix this. Two
test cases are also modified to reflect this requirement.
Fast-isel was not creating correct code for loading floating-point constants
using large code model. This also requires the addis/ld form of addressing.
Previously we were using the addis/lfd shortcut which is only applicable to
medium code model. One test case is modified to reflect this requirement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190882 91177308-0d34-0410-b5e6-96231b3b80d8
Fast-isel generates a COPY_TO_REGCLASS for widening f32 to f64, which
is a nop on PPC64. This is needed to keep the register class system
happy, but on the fast-isel path it is not removed before emit as it
is for DAG select. Ignore this op when emitting instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190795 91177308-0d34-0410-b5e6-96231b3b80d8
This is a re-commit of r190764, with an extra check to make sure that we're not
performing the transformation on illegal types (a small test case has been
added for this as well).
Original commit message:
The PPC backend uses a target-specific DAG combine to turn unaligned Altivec
loads into a permutation-based sequence when possible. Unfortunately, the
target-specific DAG combine is not always called on all loads of interest
(sometimes the routines in DAGCombine call CombineTo such that the new node and
users are not added to the worklist); allowing the combine to trigger early
(before type legalization) mitigates this problem. Because the autovectorizers
only create legal vector types, I don't expect a lot of cases where this
optimization is enabled by type legalization in practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190771 91177308-0d34-0410-b5e6-96231b3b80d8
This is causing test-suite failures.
Original commit message:
The PPC backend uses a target-specific DAG combine to turn unaligned Altivec
loads into a permutation-based sequence when possible. Unfortunately, the
target-specific DAG combine is not always called on all loads of interest
(sometimes the routines in DAGCombine call CombineTo such that the new node and
users are not added to the worklist); allowing the combine to trigger early
(before type legalization) mitigates this problem. Because the autovectorizers
only create legal vector types, I don't expect a lot of cases where this
optimization is enabled by type legalization in practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190765 91177308-0d34-0410-b5e6-96231b3b80d8
The PPC backend uses a target-specific DAG combine to turn unaligned Altivec
loads into a permutation-based sequence when possible. Unfortunately, the
target-specific DAG combine is not always called on all loads of interest
(sometimes the routines in DAGCombine call CombineTo such that the new node and
users are not added to the worklist); allowing the combine to trigger early
(before type legalization) mitigates this problem. Because the autovectorizers
only create legal vector types, I don't expect a lot of cases where this
optimization is enabled by type legalization in practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190764 91177308-0d34-0410-b5e6-96231b3b80d8
When a structure is passed by value, and that structure contains a vector
member, according to the PPC ABI, the structure will receive enhanced alignment
(so that the vector within the structure will always be aligned).
This should resolve PR16641.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190636 91177308-0d34-0410-b5e6-96231b3b80d8
In fast-math mode sqrt(x) is calculated using the fast expansion of the
reciprocal of the reciprocal sqrt expansion. The reciprocal and reciprocal
sqrt expansions use the associated estimate instructions along with some Newton
iterations. Unfortunately, as a result, sqrt(0) was being calculated as NaN,
which is not correct. Now we explicitly return a result of zero if the input is
zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190624 91177308-0d34-0410-b5e6-96231b3b80d8
Use the new instruction deprecation feature to mark mftb (now replaced with
mfspr) and dst (along with the other Altivec cache control instructions) as
deprecated when targeting cores supporting at least ISA v2.03.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190605 91177308-0d34-0410-b5e6-96231b3b80d8
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190598 91177308-0d34-0410-b5e6-96231b3b80d8
Aggressive anti-dependency breaking is enabled by default for all PPC cores.
This provides a general speedup on the P7 and other platforms (among other
factors, the instruction group formation for the non-embedded PPC cores is done
during post-RA scheduling). In order to do this safely, the incompatibility
between uses of the MFOCRF instruction and anti-dependency breaking are
resolved by marking MFOCRF with hasExtraSrcRegAllocReq. As noted in the removed
FIXME, the problem was that MFOCRF's output is sensitive to the identify of the
source register, and always paired with a shift to undo this effect. Because
anti-dependency breaking is unaware of this hidden dependency of the shift
amount on the source register of the MFOCRF instruction, changing that register
must be inhibited.
Two test cases were adjusted: The SjLj test was made more insensitive to
register choices and scheduling; the saveCR test disabled anti-dependency
breaking because part of what it is testing is proper register reuse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190587 91177308-0d34-0410-b5e6-96231b3b80d8
As Andy pointed out to me a long time ago, there are no structural hazards in
the later pipeline stages of the A2, and so modeling them is useless. Also,
modeling the top pre-dispatch stages is deceiving because, when multiple
hardware threads are active, those resources are shared among the threads. The
bypass definitions were mostly wrong, and so those have been removed. The
resulting itinerary is much simpler, and more accurate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190562 91177308-0d34-0410-b5e6-96231b3b80d8
For embedded PPC cores (especially the A2 core), using the MI scheduler with AA
is far superior to the other scheduling options.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190558 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC A2 core greatly benefits from aggressive concatenation unrolling;
use the new getUnrollingPreferences to enable this by default when targeting
the PPC A2 core.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190549 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
Here are a few miscellaneous things to tidy up the PPC64 fast-isel
implementation. I corrected a couple of commentary lapses, and added
documentation of future opportunities. I also implemented
TargetMaterializeAlloca, which I somehow forgot when I split up the
original huge patch.
Finally, I decided to delete SelectCmp. I hadn't previously hooked it
in to TargetSelectInstruction(), and when I did I realized it wasn't
serving any useful purpose. This is only useful for compares that
don't feed a branch in the same block, and to handle that we would
have to have logic to interpret i1 as a condition register. This
could probably be done, but would require Unseemly Hackery, and
honestly does not seem worth the hassle.
This ends the current patch series.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189715 91177308-0d34-0410-b5e6-96231b3b80d8
This is the last substantive patch I'm planning for fast-isel in the
near future, adding fast selection of integer truncates. There are
certainly more things that can be improved (many of which are called
out in FIXMEs), but for now we are catching most of the important
cases.
I'll document some of the remaining work in a cleanup patch shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189706 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds fast-isel support for calls (but not intrinsic calls
or varargs calls). It also removes a badly-formed assert. There are
some new tests just for calls, and also for folding loads into
arguments on calls to avoid extra extends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189701 91177308-0d34-0410-b5e6-96231b3b80d8
Yet another chunk of fast-isel code. This one handles various
conversions involving floating-point. (It also includes some
miscellaneous handling throughout the back end for LWA_32 and LWAX_32
that should have been part of the load-store patch.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189677 91177308-0d34-0410-b5e6-96231b3b80d8
Mostly trivial patch adding support for compares. The meat of the
work was added with the branch support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189639 91177308-0d34-0410-b5e6-96231b3b80d8
This is the next big chunk of fast-isel code. The primary purpose is
to implement selection of loads and stores, but there is a lot of
drag-along to support this. The common code to analyze addresses for
both loads and stores is substantial. It's also necessary to add the
materialization code for global values.
Related to load-store processing is the code to fold loads into
integer extends, since otherwise we generate lots of redundant
instructions. We also need to add some overrides to some FastEmit
routines to ensure we don't assign GPR 0 to a virtual register when
this would change the meaning of an instruction.
I added handling selection of a few binary arithmetic instructions, to
enable committing some test cases I wrote a while back.
Finally, ap couple of miscellaneous changes:
* I cleaned up some poor style from a previous patch in
PPCISelLowering.cpp, pointed out by David Blaikie.
* I enlarged the Addr.Offset field to avoid sign problems with 32-bit
offsets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189636 91177308-0d34-0410-b5e6-96231b3b80d8
first. Use this to turn the PPC modifiers into PPC specific expressions,
allowing them to work on constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189400 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r189319 and r189315. r189315 broke some tests on what I
believe are big-endian platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189321 91177308-0d34-0410-b5e6-96231b3b80d8
Incremental improvement to fast-isel for PPC64. This allows us to
select on ret, sext, and zext. Filling in sext/zext improves some of
the existing logic in handling compare-immediates that needed extends.
A simplified return convention for fast-isel is also added to the
PPC64 calling conventions. All call/return processing for DAG
selection is handled with custom code, so there isn't an existing CC
to rely on here. The include of PPCGenCallingConv.inc causes compiler
warnings due to the 32-bit calling conventions that are not used, so
the dummy function "usePPC32CCs()" is added here to silence those.
Test cases for the return and extend logic are added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189266 91177308-0d34-0410-b5e6-96231b3b80d8
First chunk of actual fast-isel selection code. This handles direct
and indirect branches, as well as feeding compares for direct
branches. PPCFastISel::PPCEmitIntExt() is just roughed in and will be
expanded in a future patch. This also corrects a problem with
selection for constant pool entries in JIT mode or with small code
model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189202 91177308-0d34-0410-b5e6-96231b3b80d8
(Patch committed on behalf of Mark Minich, whose log entry follows.)
This is a continuation of the refactorings performed in svn rev 188573
(see that rev's comments for more detail).
This is my stage 2 refactoring: I combined the emitPrologue() &
emitEpilogue() PPC32 & PPC64 code into a single flow, simplifying a
lot of the code since in essence the PPC32 & PPC64 code generation
logic is the same, only the instruction forms are different (in most
cases). This simplification is necessary because my functional changes
(yet to come) add significant complexity, and without the
simplification of my stage 2 refactoring, the overall complexity of
both emitPrologue() & emitEpilogue() would have become almost
intractable for most mortal programmers (like me).
This submission was intended to be a pure refactoring (no functional
changes whatsoever). However, in the process of combining the PPC32 &
PPC64 flows, I spotted a difference that I believe is a bug (see svn
rev 186478 line 863, or svn rev 188573 line 888): This line appears to
be restoring the BP with the original FP content, not the original BP
content. When I merged the 32-bit and 64-bit code, I used the
corresponding code from the 64-bit flow, which I believe uses the
correct offset (BPOffset) for this operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188741 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188728 91177308-0d34-0410-b5e6-96231b3b80d8
copysign/copysignf never become function calls (because the SDAG expansion code
does not lower to the corresponding function call, but rather directly
implements the associated logic), but copysignl almost always is lowered into a
call to the requested libm functon (and, thus, might clobber CTR).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188727 91177308-0d34-0410-b5e6-96231b3b80d8
Modern PPC cores support a floating-point copysign instruction, and we can use
this to lower the FCOPYSIGN node (which is created from calls to the libm
copysign function). A couple of extra patterns are necessary because the
operand types of FCOPYSIGN need not agree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188653 91177308-0d34-0410-b5e6-96231b3b80d8
safe on PPC32 SVR4 ABI
[Patch and following text by Mark Minich; committing on his behalf.]
There are FIXME's in PowerPC/PPCFrameLowering.cpp, method
PPCFrameLowering::emitPrologue() related to "negative offsets of R1"
on PPC32 SVR4. They're true, but the real issue is that on PPC32 SVR4
(and any ABI without a Red Zone), no spills may be made until after
the stackframe is claimed, which also includes the LR spill which is
at a positive offset. The same problem exists in emitEpilogue(),
though there's no FIXME for it. I intend to fix this issue, making
LLVM-compiled code finally safe for use on SVR4/EABI/e500 32-bit
platforms (including in particular, OS-free embedded systems & kernel
code, where interrupts may share the same stack as user code).
In preparation for making these changes, to make the diffs for the
functional changes less cluttered, I am providing the non-functional
refactorings in two stages:
Stage 1 does some minor fluffy refactorings to pull multiple method
calls up into a single bool, creating named bools for repeated uses of
obscure logic, moving some code up earlier because either stage 2 or
my final version will require it earlier, and rewording/adding some
comments. My stage 1 changes can be characterized as primarily fluffy
cleanup, the purpose of which may be unclear until the stage 2 or
final changes are made.
My stage 2 refactorings combine the separate PPC32 & PPC64 logic,
which is currently performed by largely duplicate code, into a single
flow, with the differences handled by a group of constants initialized
early in the methods.
This submission is for my stage 1 changes. There should be no
functional changes whatsoever; this is a pure refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188573 91177308-0d34-0410-b5e6-96231b3b80d8