Add the x32 environment kind to the triple, and separate the concept of
pointer size and callee save stack slot size, since they're not equal
on x32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173175 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r171845, which fixes the same issue in the Support code.
Only targets with >256 relocations (principally AArch64) should be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173151 91177308-0d34-0410-b5e6-96231b3b80d8
generic function calls and intrinsics. This is somewhat overlapping with
an existing intrinsic cost method, but that one seems targetted at
vector intrinsics. I'll merge them or separate their names and use cases
in a separate commit.
This sinks the test of 'callIsSmall' down into TTI where targets can
control it. The whole thing feels very hack-ish to me though. I've left
a FIXME comment about the fundamental design problem this presents. It
isn't yet clear to me what the users of this function *really* care
about. I'll have to do more analysis to figure that out. Putting this
here at least provides it access to proper analysis pass tools and other
such. It also allows us to more cleanly implement the baseline cost
interfaces in TTI.
With this commit, it is now theoretically possible to simplify much of
the inline cost analysis's handling of calls by calling through to this
interface. That conversion will have to happen in subsequent commits as
it requires more extensive restructuring of the inline cost analysis.
The CodeMetrics class is now really only in the business of running over
a block of code and aggregating the metrics on that block of code, with
the actual cost evaluation done entirely in terms of TTI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173148 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we tried to infer it from the bit width size, with an added
IsIEEE argument for the PPC/IEEE 128-bit case, which had a default
value. This default value allowed bugs to creep in, where it was
inappropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173138 91177308-0d34-0410-b5e6-96231b3b80d8
allows for gvn to perform certain optimizations. Thus the runline should
only contain -objc-arc-aa, not the full -objc-arc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173126 91177308-0d34-0410-b5e6-96231b3b80d8
This is more code to isolate the use of the Attribute class to that of just
holding one attribute instead of a collection of attributes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173094 91177308-0d34-0410-b5e6-96231b3b80d8
This cuts in half the number of virtual methods called to refill that word when compiling on a 64-bit
host, and will make 64-bit read operations faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173072 91177308-0d34-0410-b5e6-96231b3b80d8
BLOB (i.e., large, performance intensive data) in a bitcode file was switched to
invoking one virtual method call per byte read. Now we do one virtual call per
BLOB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173065 91177308-0d34-0410-b5e6-96231b3b80d8
A SparseMultiSet adds multiset behavior to SparseSet, while retaining SparseSet's desirable properties. Essentially, SparseMultiSet provides multiset behavior by storing its dense data in doubly linked lists that are inlined into the dense vector. This allows it to provide good data locality as well as vector-like constant-time clear() and fast constant time find(), insert(), and erase(). It also allows SparseMultiSet to have a builtin recycler rather than keeping SparseSet's behavior of always swapping upon removal, which allows it to preserve more iterators. It's often a better alternative to a SparseSet of a growable container or vector-of-vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173064 91177308-0d34-0410-b5e6-96231b3b80d8
it reason about the current bit position, which is always independent of the
underlying cursors word size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173063 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Michel Dänzer
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173053 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Michel Dänzer
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173052 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Michel Dänzer
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173051 91177308-0d34-0410-b5e6-96231b3b80d8
is free. The whole CodeMetrics API should probably be reworked more, but
this is enough to allow deleting the duplicate code there for computing
whether an instruction is free.
All of the passes using this have been updated to pull in TTI and hand
it to the CodeMetrics stuff. Further, a dead CodeMetrics API
(analyzeFunction) is nuked for lack of users.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173036 91177308-0d34-0410-b5e6-96231b3b80d8
analysis. How cute that it wasn't previously. ;]
Part of this confusion stems from the flattened header file tree. Thanks
to Benjamin for pointing out the goof on IRC, and we're considering
un-flattening the headers, so speak now if that would bug you.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173033 91177308-0d34-0410-b5e6-96231b3b80d8
old CodeMetrics system. TTI has the specific advantage of being
extensible and customizable by targets to reflect target-specific cost
metrics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173032 91177308-0d34-0410-b5e6-96231b3b80d8
depend on and use other analyses (as long as they're either immutable
passes or CGSCC passes of course -- nothing in the pass manager has been
fixed here). Leverage this to thread TargetTransformInfo down through
the inline cost analysis.
No functionality changed here, this just threads things through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173031 91177308-0d34-0410-b5e6-96231b3b80d8
a dynamic analysis done on each call to the routine. However, now it can
use the standard pass infrastructure to reference other analyses,
instead of a silly setter method. This will become more interesting as
I teach it about more analysis passes.
This updates the two inliner passes to use the inline cost analysis.
Doing so highlights how utterly redundant these two passes are. Either
we should find a cheaper way to do always inlining, or we should merge
the two and just fiddle with the thresholds to get the desired behavior.
I'm leaning increasingly toward the latter as it would also remove the
Inliner sub-class split.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173030 91177308-0d34-0410-b5e6-96231b3b80d8