Add in definedness checks for shift operators, null checks when
pointers are assumed by the code to be non-null, and explicit
unreachables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224255 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223672 91177308-0d34-0410-b5e6-96231b3b80d8
This can significantly reduce the size of the switch, allowing for more
efficient lowering.
I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.
SimplifyCFG currently does this transformation, but I'm working towards changing
that so we can optimize harder based on unreachable defaults.
Differential Revision: http://reviews.llvm.org/D6510
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223566 91177308-0d34-0410-b5e6-96231b3b80d8
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223348 91177308-0d34-0410-b5e6-96231b3b80d8
This is the third patch in a small series. It contains the CodeGen support for lowering the gc.statepoint intrinsic sequences (223078) to the STATEPOINT pseudo machine instruction (223085). The change also includes the set of helper routines and classes for working with gc.statepoints, gc.relocates, and gc.results since the lowering code uses them.
With this change, gc.statepoints should be functionally complete. The documentation will follow in the fourth change, and there will likely be some cleanup changes, but interested parties can start experimenting now.
I'm not particularly happy with the amount of code or complexity involved with the lowering step, but at least it's fairly well isolated. The statepoint lowering code is split into it's own files and anyone not working on the statepoint support itself should be able to ignore it.
During the lowering process, we currently spill aggressively to stack. This is not entirely ideal (and we have plans to do better), but it's functional, relatively straight forward, and matches closely the implementations of the patchpoint intrinsics. Most of the complexity comes from trying to keep relocated copies of values in the same stack slots across statepoints. Doing so avoids the insertion of pointless load and store instructions to reshuffle the stack. The current implementation isn't as effective as I'd like, but it is functional and 'good enough' for many common use cases.
In the long term, I'd like to figure out how to integrate the statepoint lowering with the register allocator. In principal, we shouldn't need to eagerly spill at all. The register allocator should do any spilling required and the statepoint should simply record that fact. Depending on how challenging that turns out to be, we may invest in a smarter global stack slot assignment mechanism as a stop gap measure.
Reviewed by: atrick, ributzka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223137 91177308-0d34-0410-b5e6-96231b3b80d8
This can significantly reduce the size of the switch, allowing for more
efficient lowering.
I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223049 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221711 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
Our metadata scheme lazily assigns IDs to string metadata, but we have a mechanism to preassign them as well. Using a preassigned ID is helpful since we get compile time type checking, and avoid some (minimal) string construction and comparison. This change adds enum value for three existing metadata types:
+ MD_nontemporal = 9, // "nontemporal"
+ MD_mem_parallel_loop_access = 10, // "llvm.mem.parallel_loop_access"
+ MD_nonnull = 11 // "nonnull"
I went through an updated various uses as well. I made no attempt to get all uses; I focused on the ones which were easily grepable and easily to translate. For example, there were several items in LoopInfo.cpp I chose not to update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220248 91177308-0d34-0410-b5e6-96231b3b80d8
TL;DR: Indexing maps with [] creates missing entries.
The long version:
When selecting lifetime intrinsics, we index the *static* alloca map with the AllocaInst we find for that lifetime. Trouble is, we don't first check to see if this is a dynamic alloca.
On the attached example, this causes a dynamic alloca to create an entry in the static map, and returns 0 (the default) as the frame index for that lifetime. 0 was used for the frame index of the stack protector, which given that it now has a lifetime, is coloured, and merged with other stack slots.
PEI would later trigger an assert because it expects the stack protector to not be dead.
This fix ensures that we only get frame indices for static allocas, ie, those in the map. Dynamic ones are effectively dropped, which is suboptimal, but at least isn't completely broken.
rdar://problem/18672951
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220099 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Backends can use setInsertFencesForAtomic to signal to the middle-end that
montonic is the only memory ordering they can accept for
stores/loads/rmws/cmpxchg. The code lowering those accesses with a stronger
ordering to fences + monotonic accesses is currently living in
SelectionDAGBuilder.cpp. In this patch I propose moving this logic out of it
for several reasons:
- There is lots of redundancy to avoid: extremely similar logic already
exists in AtomicExpand.
- The current code in SelectionDAGBuilder does not use any target-hooks, it
does the same transformation for every backend that requires it
- As a result it is plain *unsound*, as it was apparently designed for ARM.
It happens to mostly work for the other targets because they are extremely
conservative, but Power for example had to switch to AtomicExpand to be
able to use lwsync safely (see r218331).
- Because it produces IR-level fences, it cannot be made sound ! This is noted
in the C++11 standard (section 29.3, page 1140):
```
Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering semantics.
```
It can also be seen by the following example (called IRIW in the litterature):
```
atomic<int> x = y = 0;
int r1, r2, r3, r4;
Thread 0:
x.store(1);
Thread 1:
y.store(1);
Thread 2:
r1 = x.load();
r2 = y.load();
Thread 3:
r3 = y.load();
r4 = x.load();
```
r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all seq_cst.
But if they are lowered to monotonic accesses, no amount of fences can prevent it..
This patch does three things (I could cut it into parts, but then some of them
would not be tested/testable, please tell me if you would prefer that):
- it provides a default implementation for emitLeadingFence/emitTrailingFence in
terms of IR-level fences, that mimic the original logic of SelectionDAGBuilder.
As we saw above, this is unsound, but the best that can be done without knowing
the targets well (and there is a comment warning about this risk).
- it then switches Mips/Sparc/XCore to use AtomicExpand, relying on this default
implementation (that exactly replicates the logic of SelectionDAGBuilder, so no
functional change)
- it finally erase this logic from SelectionDAGBuilder as it is dead-code.
Ideally, each target would define its own override for emitLeading/TrailingFence
using target-specific fences, but I do not know the Sparc/Mips/XCore memory model
well enough to do this, and they appear to be dealing fine with the ARM-inspired
default expansion for now (probably because they are overly conservative, as
Power was). If anyone wants to compile fences more agressively on these
platforms, the long comment should make it clear why he should first override
emitLeading/TrailingFence.
Test Plan: make check-all, no functional change
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5474
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219957 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218101 91177308-0d34-0410-b5e6-96231b3b80d8
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reinstates commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
The FPv4-SP floating-point unit is generally referred to as
single-precision only, but it does have double-precision registers and
load, store and GPR<->DPR move instructions which operate on them.
This patch enables the use of these registers, the main advantage of
which is that we now comply with the AAPCS-VFP calling convention.
This partially reverts r209650, which added some AAPCS-VFP support,
but did not handle return values or alignment of double arguments in
registers.
This patch also adds tests for Thumb2 code generation for
floating-point instructions and intrinsics, which previously only
existed for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216172 91177308-0d34-0410-b5e6-96231b3b80d8
legalization stage. With those two optimizations, fewer signed/zero extension
instructions can be inserted, and then we can expose more opportunities to
Machine CSE pass in back-end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216066 91177308-0d34-0410-b5e6-96231b3b80d8
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).
This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215512 91177308-0d34-0410-b5e6-96231b3b80d8
__stack_chk_guard.
Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.
%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)
Original test case provided by Ana Pazos.
This fixes PR20558.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215167 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215111 91177308-0d34-0410-b5e6-96231b3b80d8
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214055 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213967 91177308-0d34-0410-b5e6-96231b3b80d8
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213859 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the first stage DAG for @llvm.convert.to.fp16 an fptrunc,
and correspondingly @llvm.convert.from.fp16 an fpext. The legalisation
path is now uniform, regardless of the input IR:
fptrunc -> FP_TO_FP16 (if f16 illegal) -> libcall
fpext -> FP16_TO_FP (if f16 illegal) -> libcall
Each target should be able to select the version that best matches its
operations and not be required to duplicate patterns for both fptrunc
and FP_TO_FP16 (for example).
As a result we can remove some redundant AArch64 patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213507 91177308-0d34-0410-b5e6-96231b3b80d8