optimizations when emitting calls to the function; instead those calls may
use faster relocations which require the function to be immediately resolved
upon loading the dynamic object featuring the call. This is useful when it
is known that the function will be called frequently and pervasively and
therefore there is no merit in delaying binding of the function.
Currently only implemented for x86-64, where it turns into a call through
the global offset table.
Patch by Dan Gohman, who assures me that he's going to add LangRef documentation
for this once it's committed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133080 91177308-0d34-0410-b5e6-96231b3b80d8
floating-point comparison, generate a mask of 0s or 1s, and generally
DTRT with NaNs. Only profitable when the user wants a materialized 0
or 1 at runtime. rdar://problem/5993888
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132404 91177308-0d34-0410-b5e6-96231b3b80d8
non-zero.
- Teach X86 cmov optimization to eliminate the cmov from ctlz, cttz extension
when the source of X86ISD::BSR / X86ISD::BSF is proven to be non-zero.
rdar://9490949
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131948 91177308-0d34-0410-b5e6-96231b3b80d8
I'm backing this out for the second time. It was supposed to be fixed by r128164, but the mingw self-host must be defeating the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128181 91177308-0d34-0410-b5e6-96231b3b80d8
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127953 91177308-0d34-0410-b5e6-96231b3b80d8
not have native support for this operation (such as X86).
The legalized code uses two vector INT_TO_FP operations and is faster
than scalarizing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127951 91177308-0d34-0410-b5e6-96231b3b80d8
comparisons on x86. Essentially, the way this works is that SUB+SBB sets
the relevant flags the same way a double-width CMP would.
This is a substantial improvement over the generic lowering in LLVM. The output
is also shorter than the gcc-generated output; I haven't done any detailed
benchmarking, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127852 91177308-0d34-0410-b5e6-96231b3b80d8
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127766 91177308-0d34-0410-b5e6-96231b3b80d8
corresponding testcases back to the previous versions.
Fixes some performance regressions only seen on 32-bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127441 91177308-0d34-0410-b5e6-96231b3b80d8