Spell out destructor, copy/move constructor and assignment operators for
MSVC STL, where set<T>::const_iterator is not trivially copy constructible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337292 91177308-0d34-0410-b5e6-96231b3b80d8
rL333307 was introduced to remove automatic target triple
normalization when calling sys::getDefaultTargetTriple(), arguing
that users of the latter already called Triple::normalize()
if necessary. However, users of the C API currently have no way of
doing target triple normalization.
This patch introduces an LLVMNormalizeTargetTriple function to
the C API which wraps Triple::normalize() and can be used on
the result of LLVMGetDefaultTargetTriple to achieve the same effect.
Differential Revision: https://reviews.llvm.org/D49414
Reviewed By: whitequark
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337263 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123292.htmlhttp://lists.llvm.org/pipermail/llvm-dev/2018-July/124400.html
We want to add rotate intrinsics because the IR expansion of that pattern is 4+ instructions,
and we can lose pieces of the pattern before it gets to the backend. Generalizing the operation
by allowing 2 different input values (plus the 3rd shift/rotate amount) gives us a "funnel shift"
operation which may also be a single hardware instruction.
Initially, I thought we needed to define new DAG nodes for these ops, and I spent time working
on that (much larger patch), but then I concluded that we don't need it. At least as a first
step, we have all of the backend support necessary to match these ops...because it was required.
And shepherding these through the IR optimizer is the primary concern, so the IR intrinsics are
likely all that we'll ever need.
There was also a question about converting the intrinsics to the existing ROTL/ROTR DAG nodes
(along with improving the oversized shift documentation). Again, I don't think that's strictly
necessary (as the test results here prove). That can be an efficiency improvement as a small
follow-up patch.
So all we're left with is documentation, definition of the IR intrinsics, and DAG builder support.
Differential Revision: https://reviews.llvm.org/D49242
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337221 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r337081, therefore restoring r337050 (and fix in
r337059), with test fix for bot failure described after the original
description below.
In order to always import the same copy of a linkonce function,
even when encountering it with different thresholds (a higher one then a
lower one), keep track of the summary we decided to import.
This ensures that the backend only gets a single definition to import
for each GUID, so that it doesn't need to choose one.
Move the largest threshold the GUID was considered for import into the
current module out of the ImportMap (which is part of a larger map
maintained across the whole index), and into a new map just maintained
for the current module we are computing imports for. This saves some
memory since we no longer have the thresholds maintained across the
whole index (and throughout the in-process backends when doing a normal
non-distributed ThinLTO build), at the cost of some additional
information being maintained for each invocation of ComputeImportForModule
(the selected summary pointer for each import).
There is an additional map lookup for each callee being considered for
importing, however, this was able to subsume a map lookup in the
Worklist iteration that invokes computeImportForFunction. We also are
able to avoid calling selectCallee if we already failed to import at the
same or higher threshold.
I compared the run time and peak memory for the SPEC2006 471.omnetpp
benchmark (running in-process ThinLTO backends), as well as for a large
internal benchmark with a distributed ThinLTO build (so just looking at
the thin link time/memory). Across a number of runs with and without
this change there was no significant change in the time and memory.
(I tried a few other variations of the change but they also didn't
improve time or peak memory).
The new commit removes a test that no longer makes sense
(Transforms/FunctionImport/hotness_based_import2.ll), as exposed by the
reverse-iteration bot. The test depends on the order of processing the
summary call edges, and actually depended on the old problematic
behavior of selecting more than one summary for a given GUID when
encountered with different thresholds. There was no guarantee even
before that we would eventually pick the linkonce copy with the hottest
call edges, it just happened to work with the test and the old code, and
there was no guarantee that we would end up importing the selected
version of the copy that had the hottest call edges (since the backend
would effectively import only one of the selected copies).
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D48670
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337184 91177308-0d34-0410-b5e6-96231b3b80d8
For dsymutil we want to store offsets in the accelerator table entries
rather than DIE pointers. In addition, we need a way to communicate
which CU a DIE belongs to. This patch provides support for both of these
issues.
Differential revision: https://reviews.llvm.org/D49102
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337158 91177308-0d34-0410-b5e6-96231b3b80d8
Bug fix for PR37808. The regression test is a reduced version of the
original reproducer attached to the bug report. As stated in the report,
the problem was that InsertedPHIs was keeping dangling pointers to
deleted Memory-Phis. MemoryPhis are created eagerly and sometimes get
zapped shortly afterwards. I've used WeakVH instead of an expensive
removal operation from the active workset.
Differential Revision: https://reviews.llvm.org/D48372
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337149 91177308-0d34-0410-b5e6-96231b3b80d8
registers.
The goal of this patch is to improve the throughput analysis in llvm-mca for the
case where instructions perform partial register writes.
On x86, partial register writes are quite difficult to model, mainly because
different processors tend to implement different register merging schemes in
hardware.
When the code contains partial register writes, the IPC (instructions per
cycles) estimated by llvm-mca tends to diverge quite significantly from the
observed IPC (using perf).
Modern AMD processors (at least, from Bulldozer onwards) don't rename partial
registers. Quoting Agner Fog's microarchitecture.pdf:
" The processor always keeps the different parts of an integer register together.
For example, AL and AH are not treated as independent by the out-of-order
execution mechanism. An instruction that writes to part of a register will
therefore have a false dependence on any previous write to the same register or
any part of it."
This patch is a first important step towards improving the analysis of partial
register updates. It changes the semantic of RegisterFile descriptors in
tablegen, and teaches llvm-mca how to identify false dependences in the presence
of partial register writes (for more details: see the new code comments in
include/Target/TargetSchedule.h - class RegisterFile).
This patch doesn't address the case where a write to a part of a register is
followed by a read from the whole register. On Intel chips, high8 registers
(AH/BH/CH/DH)) can be stored in separate physical registers. However, a later
(dirty) read of the full register (example: AX/EAX) triggers a merge uOp, which
adds extra latency (and potentially affects the pipe usage).
This is a very interesting article on the subject with a very informative answer
from Peter Cordes:
https://stackoverflow.com/questions/45660139/how-exactly-do-partial-registers-on-haswell-skylake-perform-writing-al-seems-to
In future, the definition of RegisterFile can be extended with extra information
that may be used to identify delays caused by merge opcodes triggered by a dirty
read of a partial write.
Differential Revision: https://reviews.llvm.org/D49196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337123 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r337050 and r337059. Caused failure in
reverse-iteration bot that needs more investigation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337081 91177308-0d34-0410-b5e6-96231b3b80d8
In order to always import the same copy of a linkonce function,
even when encountering it with different thresholds (a higher one then a
lower one), keep track of the summary we decided to import.
This ensures that the backend only gets a single definition to import
for each GUID, so that it doesn't need to choose one.
Move the largest threshold the GUID was considered for import into the
current module out of the ImportMap (which is part of a larger map
maintained across the whole index), and into a new map just maintained
for the current module we are computing imports for. This saves some
memory since we no longer have the thresholds maintained across the
whole index (and throughout the in-process backends when doing a normal
non-distributed ThinLTO build), at the cost of some additional
information being maintained for each invocation of ComputeImportForModule
(the selected summary pointer for each import).
There is an additional map lookup for each callee being considered for
importing, however, this was able to subsume a map lookup in the
Worklist iteration that invokes computeImportForFunction. We also are
able to avoid calling selectCallee if we already failed to import at the
same or higher threshold.
I compared the run time and peak memory for the SPEC2006 471.omnetpp
benchmark (running in-process ThinLTO backends), as well as for a large
internal benchmark with a distributed ThinLTO build (so just looking at
the thin link time/memory). Across a number of runs with and without
this change there was no significant change in the time and memory.
(I tried a few other variations of the change but they also didn't
improve time or peak memory).
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D48670
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337050 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently LowerTypeTests emits jumptable entries for all live external
and address-taken functions; however, we could limit the number of
functions that we emit entries for significantly.
For Cross-DSO CFI, we continue to emit jumptable entries for all
exported definitions. In the non-Cross-DSO CFI case, we only need to
emit jumptable entries for live functions that are address-taken in live
functions. This ignores exported functions and functions that are only
address taken in dead functions. This change uses ThinLTO summary data
(now emitted for all modules during ThinLTO builds) to determine
address-taken and liveness info.
The logic for emitting jumptable entries is more conservative in the
regular LTO case because we don't have summary data in the case of
monolithic LTO builds; however, once summaries are emitted for all LTO
builds we can unify the Thin/monolithic LTO logic to only use summaries
to determine the liveness of address taking functions.
This change is a partial fix for PR37474. It reduces the build size for
nacl_helper by ~2-3%, the reduction is due to nacl_helper compiling in
lots of unused code and unused functions that are address taken in dead
functions no longer being being considered live due to emitted jumptable
references. The reduction for chromium is ~0.1-0.2%.
Reviewers: pcc, eugenis, javed.absar
Reviewed By: pcc
Subscribers: aheejin, dexonsmith, dschuff, mehdi_amini, eraman, steven_wu, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D47652
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337038 91177308-0d34-0410-b5e6-96231b3b80d8
For instance, When dumping .apple_types, the second atom represents the
DW_TAG. In addition to printing the raw value, we now also pretty print
the value if the ATOM tells us how.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337026 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r336419: use-after-free on CallGraph::FunctionMap elements
due to the use of a stale iterator in CGPassManager::runOnModule.
The iterator may be invalidated if a pass removes a function, ex.:
llvm::LegacyInlinerBase::inlineCalls
inlineCallsImpl
llvm::CallGraph::removeFunctionFromModule
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337018 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337007 91177308-0d34-0410-b5e6-96231b3b80d8
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336999 91177308-0d34-0410-b5e6-96231b3b80d8
Spectre variant #1 for x86.
There is a lengthy, detailed RFC thread on llvm-dev which discusses the
high level issues. High level discussion is probably best there.
I've split the design document out of this patch and will land it
separately once I update it to reflect the latest edits and updates to
the Google doc used in the RFC thread.
This patch is really just an initial step. It isn't quite ready for
prime time and is only exposed via debugging flags. It has two major
limitations currently:
1) It only supports x86-64, and only certain ABIs. Many assumptions are
currently hard-coded and need to be factored out of the code here.
2) It doesn't include any options for more fine-grained control, either
of which control flow edges are significant or which loads are
important to be hardened.
3) The code is still quite rough and the testing lighter than I'd like.
However, this is enough for people to begin using. I have had numerous
requests from people to be able to experiment with this patch to
understand the trade-offs it presents and how to use it. We would also
like to encourage work to similar effect in other toolchains.
The ARM folks are actively developing a system based on this for
AArch64. We hope to merge this with their efforts when both are far
enough along. But we also don't want to block making this available on
that effort.
Many thanks to the *numerous* people who helped along the way here. For
this patch in particular, both Eric and Craig did a ton of review to
even have confidence in it as an early, rough cut at this functionality.
Differential Revision: https://reviews.llvm.org/D44824
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336990 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
llvm-xray changes:
- account-mode - process-id {...} shows after thread-id
- convert-mode - process {...} shows after thread
- parses FDR and basic mode pid entries
- Checks version number for FDR log parsing.
Basic logging changes:
- Update header version from 2 -> 3
FDR logging changes:
- Update header version from 2 -> 3
- in writeBufferPreamble, there is an additional PID Metadata record (after thread id record and tsc record)
Test cases changes:
- fdr-mode.cc, fdr-single-thread.cc, fdr-thread-order.cc modified to catch process id output in the log.
Reviewers: dberris
Reviewed By: dberris
Subscribers: hiraditya, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D49153
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336974 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously, when both DT and PDT are nullptrs and the UpdateStrategy is Lazy, DomTreeUpdater still pends updates inside.
After this patch, DomTreeUpdater will ignore all updates from(`applyUpdates()/insertEdge*()/deleteEdge*()`) in this case. (call `delBB()` still pends BasicBlock deletion until a flush event according to the doc).
The behavior of DomTreeUpdater previously documented won't change after the patch.
Reviewers: dmgreen, davide, kuhar, brzycki, grosser
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48974
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336968 91177308-0d34-0410-b5e6-96231b3b80d8
This re-applies r336929 with a fix to accomodate for the Mips target
scheduling multiple SelectionDAG instances into the pass pipeline.
PrologEpilogInserter and StackColoring depend on the StackProtector analysis
being alive from the point it is run until PEI, which requires that they are all
scheduled in the same FunctionPassManager. Inserting a (machine) ModulePass
between StackProtector and PEI results in these passes being in separate
FunctionPassManagers and the StackProtector is not available for PEI.
PEI and StackColoring don't use much information from the StackProtector pass,
so transfering the required information to MachineFrameInfo is cleaner than
keeping the StackProtector pass around. This commit moves the SSP layout
information to MFI instead of keeping it in the pass.
This patch set (D37580, D37581, D37582, D37583, D37584, D37585, D37586, D37587)
is a first draft of the pagerando implementation described in
http://lists.llvm.org/pipermail/llvm-dev/2017-June/113794.html.
Patch by Stephen Crane <sjc@immunant.com>
Differential Revision: https://reviews.llvm.org/D49256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336964 91177308-0d34-0410-b5e6-96231b3b80d8
PrologEpilogInserter and StackColoring depend on the StackProtector analysis
being alive from the point it is run until PEI, which requires that they are all
scheduled in the same FunctionPassManager. Inserting a (machine) ModulePass
between StackProtector and PEI results in these passes being in separate
FunctionPassManagers and the StackProtector is not available for PEI.
PEI and StackColoring don't use much information from the StackProtector pass,
so transfering the required information to MachineFrameInfo is cleaner than
keeping the StackProtector pass around. This commit moves the SSP layout
information to MFI instead of keeping it in the pass.
This patch set (D37580, D37581, D37582, D37583, D37584, D37585, D37586, D37587)
is a first draft of the pagerando implementation described in
http://lists.llvm.org/pipermail/llvm-dev/2017-June/113794.html.
Patch by Stephen Crane <sjc@immunant.com>
Differential Revision: https://reviews.llvm.org/D49256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336929 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Someone must be responsible for handling an Error. When formatv takes
ownership of an Error, the formatv_object destructor must take care of this.
Passing an error by value to formatv() is not considered explicit enough to mark
the error as handled (see D49013), so we require callers to use a format adapter
to confirm this intent.
Reviewers: zturner
Subscribers: llvm-commits, lhames
Differential Revision: https://reviews.llvm.org/D49170
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336888 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously, when people need to deal with DTU with different UpdateStrategy using different actions, they need to
```
if (DTU.getUpdateStrategy() == DomTreeUpdater::UpdateStrategy::Lazy) {
...
}
if (DTU.getUpdateStrategy() == DomTreeUpdater::UpdateStrategy::Eager) {
...
}
```
After the patch, they can avoid code patterns above
```
if (DTU.isUpdateLazy()){
...
}
if (!DTU.isUpdateLazy()){
...
}
```
Reviewers: kuhar, brzycki, dmgreen
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49056
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336886 91177308-0d34-0410-b5e6-96231b3b80d8
This converts them to what clang is now using for codegen. Unfortunately, there seem to be a few kinks to work out still. I'll try to address with follow up patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336871 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The move APIs added in this patch will be used to update MemorySSA when CFG changes merge or split blocks, by moving memory accesses accordingly in MemorySSA's internal data structures.
[Split from D45299 for easier review]
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D48897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336860 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
https://bugs.llvm.org/show_bug.cgi?id=38123
This pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in unsigned case, therefore it is probably a good idea to improve it.
https://rise4fun.com/Alive/Rny
^ there are more opportunities for folds, i will follow up with them afterwards.
Caveat: this somehow exposes a missing opportunities
in `test/Transforms/InstCombine/icmp-logical.ll`
It seems, the problem is in `foldLogOpOfMaskedICmps()` in `InstCombineAndOrXor.cpp`.
But i'm not quite sure what is wrong, because it calls `getMaskedTypeForICmpPair()`,
which calls `decomposeBitTestICmp()` which should already work for these cases...
As @spatel notes in https://reviews.llvm.org/D49179#1158760,
that code is a rather complex mess, so we'll let it slide.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: yamauchi, majnemer, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D49179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336834 91177308-0d34-0410-b5e6-96231b3b80d8
This version now uses the subset of is_trivially_XXX provided by
GCC 4.8 and llvm/Support/type_traits.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336805 91177308-0d34-0410-b5e6-96231b3b80d8
AT_NAME was being emitted before the directory paths were remapped. This
ensures that all paths are remapped before anything is emitted.
An additional test case has been added.
Note that this only works if the replacement string is an absolute path.
If not, then AT_decl_file believes the new path is a relative path, and
joins that path with the compilation directory. I do not know of a good
way to resolve this.
Patch by: Siddhartha Bagaria (starsid)
Differential revision: https://reviews.llvm.org/D49169
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336793 91177308-0d34-0410-b5e6-96231b3b80d8
The aim of this backend is to output everything TableGen knows about
the record set, similarly to the default -print-records backend. But
where -print-records produces output in TableGen's input syntax
(convenient for humans to read), this backend produces it as
structured JSON data, which is convenient for loading into standard
scripting languages such as Python, in order to extract information
from the data set in an automated way.
The output data contains a JSON representation of the variable
definitions in output 'def' records, and a few pieces of metadata such
as which of those definitions are tagged with the 'field' prefix and
which defs are derived from which classes. It doesn't dump out
absolutely every piece of knowledge it _could_ produce, such as type
information and complicated arithmetic operator nodes in abstract
superclasses; the main aim is to allow consumers of this JSON dump to
essentially act as new backends, and backends don't generally need to
depend on that kind of data.
The new backend is implemented as an EmitJSON() function similar to
all of llvm-tblgen's other EmitFoo functions, except that it lives in
lib/TableGen instead of utils/TableGen on the basis that I'm expecting
to add it to clang-tblgen too in a future patch.
To test it, I've written a Python script that loads the JSON output
and tests properties of it based on comments in the .td source - more
or less like FileCheck, except that the CHECK: lines have Python
expressions after them instead of textual pattern matches.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: arichardson, labath, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D46054
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336771 91177308-0d34-0410-b5e6-96231b3b80d8
symbols in another VSO).
Also fixes a bug where chained aliases within a single VSO would deadlock on
materialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336741 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I noticed that the .imports files emitted for distributed ThinLTO
backends do not have consistent ordering. This is because StringMap
iteration order is not guaranteed to be deterministic. Since we already
have a std::map with this information, used when emitting the individual
index files (ModuleToSummariesForIndex), use it for the imports files as
well.
This issue is likely causing some unnecessary rebuilds of the ThinLTO
backends in our distributed build system as the imports files are inputs
to those backends.
Reviewers: pcc, steven_wu, mehdi_amini
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48783
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336721 91177308-0d34-0410-b5e6-96231b3b80d8
When manually finishing the object writer in dsymutil, it's possible
that there are pending labels that haven't been resolved. This results
in an assertion when the assembler tries to fixup a label that doesn't
have an address yet.
Differential revision: https://reviews.llvm.org/D49131
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336688 91177308-0d34-0410-b5e6-96231b3b80d8