Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188472 91177308-0d34-0410-b5e6-96231b3b80d8
1. The offset range for Thumb1 PC relative loads is [0..1020] and not [-1024..1020]
2. Thumb2 PC relative loads may define the PC, so the restriction placed on target register is removed
3. Removes unneeded alias between "ldr.n" and t1LDRpci. ".n" is actually stripped by both tablegen
and the ASM parser, so this alias rule really does nothing
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188466 91177308-0d34-0410-b5e6-96231b3b80d8
We were marking both LLVMBUILDOUTPUT and LLVMBUILDERRORS as
ERROR_VARIABLES when clearly LLVMBUILDOUTPUT should be marked as
OUTPUT_VARIABLE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188444 91177308-0d34-0410-b5e6-96231b3b80d8
When new virtual registers are created during splitting/spilling, defer
creation of the live interval until we need to use the live interval.
Along with the recent commits to notify LiveRangeEdit when new virtual
registers are created, this makes it possible for functions like
TargetInstrInfo::loadRegFromStackSlot() and
TargetInstrInfo::storeRegToStackSlot() to create multiple virtual
registers as part of the process of generating loads/stores for
different register classes, and then have the live intervals for those
new registers computed when they are needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188437 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstrSpan is initialized with a MachineBasicBlock::iterator,
and is intended to track which instructions are inserted before/after
that instruction from the time the MachineInstrSpan is created.
It provides a begin()/end() interface to walk the range of
instructions inserted around the initial instruction (including that
initial instruction).
It also provides a getInitial() interface to return the initial
iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188436 91177308-0d34-0410-b5e6-96231b3b80d8
Add a delegate class to MachineRegisterInfo with a single virtual
function, MRI_NoteNewVirtualRegister(). Update LiveRangeEdit to inherit
from this delegate class and override the definition of the callback
with an implementation that tracks the newly created virtual registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188435 91177308-0d34-0410-b5e6-96231b3b80d8
Track new virtual registers by register number, rather than by the live
interval created for them. This is the first step in separating the
creation of new virtual registers and new live intervals. Eventually
live intervals will be created and populated on demand after the virtual
registers have been created and used in instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188434 91177308-0d34-0410-b5e6-96231b3b80d8
Now that compute support is better on SI, we can't continue using v16i8
for descriptors since this is also a legal type in OpenCL.
This patch fixes numerous hangs with the piglit OpenCL test and since
we now use a target specific DAG node for LOAD_CONSTANT with the
correct MemOperandFlags, this should also fix:
https://bugs.freedesktop.org/show_bug.cgi?id=66805
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188429 91177308-0d34-0410-b5e6-96231b3b80d8
Using REG_SEQUENCE for BUILD_VECTOR rather than a series of INSERT_SUBREG
instructions should make it easier for the register allocator to coalasce
unnecessary copies.
v2:
- Use an SGPR register class if all the operands of BUILD_VECTOR are
SGPRs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188427 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction selector will now try to infer the destination register
so it can decided whether to use V_MOV_B32 or S_MOV_B32 when copying
immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188426 91177308-0d34-0410-b5e6-96231b3b80d8
The previous code declared the operand as unknown:$vaddr, which made
it possible for scalar registers to be used instead of vector registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188425 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the F2U opcode for the Mesa driver.
Patch by: Marek Olšák
Signed-off-by: Marek Olšák <marek.olsak@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188418 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r187693, correcting that code to request the correct
register class. The previous version, with the wrong register class, was not
really correcting the constraints, but rather was removing them. Coincidentally,
this fixed the failing test case in r187693, but obviously created other
problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188407 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188402 91177308-0d34-0410-b5e6-96231b3b80d8
- For whatever reason, we have a lot of test files with bogus unicode
characters. This patch allows those scripts to still be parsed on Python3 by
changing the parsing logic to work on binary files, and only require the
actual script commands to be convertible to ascii.
- This patch has been tweaked to now ensure that the command strings are not of
unicode type on Python 2.6-7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188398 91177308-0d34-0410-b5e6-96231b3b80d8
When determining if two different loads are from the same base address,
this patch allows one load to use a t2LDRi8 address mode and another to
use a t2LDRi12 address mode. The current implementation is very
conservative and this allows the case of differing Thumb2 byte loads to
be considered. Allowing these differing modes instead of forcing the exact
same opcode is useful for situations where one opcodes loads from a base
address+1 and a second opcode loads for a base address-1.
Patch by Daniel Stewart.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188385 91177308-0d34-0410-b5e6-96231b3b80d8