This helps avoid redundant instructions to unpack, and repack
the vectors. Ideally we could recognize that pattern and eliminate
it. Currently v4i8 and other small element type vectors are scalarized,
so this has the added bonus of avoiding that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213031 91177308-0d34-0410-b5e6-96231b3b80d8
Now functions 'test4', 'test9', 'test14' and 'test19' correctly perform
a move of two packed values from the high quadword of vector %b to the low
quadword of vector %a (movhlps idiom).
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213029 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes a crasher in method 'DAGCombiner::visitOR' due to an invalid
call to method 'isShuffleMaskLegal'. On x86, method 'isShuffleMaskLegal'
always expects a legal vector value type in input.
With this patch, we immediately check if the input OR dag node has a legal
vector type; we only try to fold a OR dag node into a single shufflevector
if we know that the resulting shuffle will have a legal type.
This is to avoid calling method 'isShuffleMaskLegal' on a potentially
illegal vector value type.
Added a new test-case to file 'CodeGen/X86/combine-or.ll' to verify that
DAGCombiner doesn't crash in the attempt to check/combine an OR between shuffles
with illegal types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213020 91177308-0d34-0410-b5e6-96231b3b80d8
COFF lacks a feature that other object file formats support: mergeable
sections.
To work around this, MSVC sticks constant pool entries in special COMDAT
sections so that each constant is in it's own section. This permits
unused constants to be dropped and it also allows duplicate constants in
different translation units to get merged together.
This fixes PR20262.
Differential Revision: http://reviews.llvm.org/D4482
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213006 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold a pair of shuffles
according to rules:
1. shuffle(shuffle A, B, M0), B, M1) -> shuffle(A, B, M2)
2. shuffle(shuffle A, B, M0), A, M1) -> shuffle(A, B, M3)
The new rules would only trigger if the resulting shuffle has legal type and
legal mask.
Added test 'combine-vec-shuffle-3.ll' to verify that DAGCombiner correctly
folds shuffles on x86 when the resulting mask is legal. Also added some negative
cases to verify that we avoid introducing illegal shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213001 91177308-0d34-0410-b5e6-96231b3b80d8
Determining the bounds of x/ -1 would start off with us dividing it by
INT_MIN. Suffice to say, this would not work very well.
Instead, handle it upfront by checking for -1 and mapping it to the
range: [INT_MIN + 1, INT_MAX. This means that the result of our
division can be any value other than INT_MIN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212981 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When calculating the upper bound of X / -8589934592, we would perform
the following calculation: Floor[INT_MAX / 8589934592]
However, flooring the result would make us wrongly come to the
conclusion that 1073741824 was not in the set of possible values.
Instead, use the ceiling of the result.
Reviewers: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4502
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212976 91177308-0d34-0410-b5e6-96231b3b80d8
We would emit a libcall for a 64-bit atomic on x86 after SVN r212119. This was
due to the misuse of hasCmpxchg16 to indicate if cmpxchg8b was supported on a
32-bit target. They were added at different times and would result in the
border condition being mishandled.
This fixes the border case to emit the cmpxchg8b instruction for 64-bit atomic
operations on x86 at the cost of restoring a long-standing bug in the codegen.
We emit a cmpxchg8b on all x86 targets even where the CPU does not support this
instruction (pre-Pentium CPUs). Although this bug should be fixed, this was
present prior to SVN r212119 and this change, so this is not really introducing
a regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212956 91177308-0d34-0410-b5e6-96231b3b80d8
The size of the uninitialized sections, like BSS, can exceed the size of
the object file.
Do not attempt to grab the contents of such sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212953 91177308-0d34-0410-b5e6-96231b3b80d8
We construct a temporary "atomicrmw xchg" instruction when lowering atomic
stores for widths that aren't supported natively. This isn't on the top-level
worklist though, so it won't be removed automatically and we have to do it
ourselves once that itself has been lowered.
Thanks Saleem for pointing this out!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212948 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
.bss, .text, and .data are at least 16-byte aligned.
.reginfo is 4-byte aligned and has a 24-byte EntrySize.
.MIPS.abiflags has an 24-byte EntrySize.
.MIPS.options is 8-byte aligned and has 1-byte EntrySize.
Using a 1-byte EntrySize for .MIPS.options seems strange because the
records are neither 1-byte long nor fixed-length but this matches the value
that GAS emits.
Differential Revision: http://reviews.llvm.org/D4487
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212939 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is because the FP64A the hardware will redirect 32-bit reads/writes
from/to odd-numbered registers to the upper 32-bits of the corresponding
even register. In effect, simulating FR=0 mode when FR=0 mode is not
available.
Unfortunately, we have to make the decision to avoid mfc1/mtc1 before
register allocation so we currently do this for even registers too.
FPXX has a similar requirement on 32-bit architectures that lack
mfhc1/mthc1 so this patch also handles the affected moves from the FPU for
FPXX too. Moves to the FPU were supported by an earlier commit.
Differential Revision: http://reviews.llvm.org/D4484
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212938 91177308-0d34-0410-b5e6-96231b3b80d8
Sufficiently twisted use of TableGen lets us write patterns directly for f16
(as an i16 promoted to i32) -> f32 conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212933 91177308-0d34-0410-b5e6-96231b3b80d8
enabled and mthc1 and dmtc1 are not available (e.g. on MIPS32r1)
This prevents the upper 32-bits of a double precision value from being moved to
the FPU with mtc1 to an odd-numbered FPU register. This is necessary to ensure
that the code generated executes correctly regardless of the current FPU mode.
MIPS32r2 and above continues to use mtc1/mthc1, while MIPS-IV and above continue
to use dmtc1.
Differential Revision: http://reviews.llvm.org/D4465
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212930 91177308-0d34-0410-b5e6-96231b3b80d8
This crash was pretty common while compiling Rust for iOS (armv7). Reason -
SjLj preparation step was lowering aggregate arguments as ExtractValue +
InsertValue. ExtractValue has assertion which checks that there is some data in
value, which is not true in case of empty (no fields) structures. Rust uses
them quite extensively so this patch uses a 'select true, %val, undef'
instruction to lower the argument.
Patch by Valerii Hiora.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212922 91177308-0d34-0410-b5e6-96231b3b80d8
Verify that DAGCombiner does not crash when trying to fold a pair of shuffles
according to rule (added at r212539):
(shuffle (shuffle A, Undef, M0), Undef, M1) -> (shuffle A, Undef, M2)
The DAGCombiner avoids folding shuffles if the resulting shuffle dag node
is not legal for the target. That means, the resulting shuffle must have
legal type and legal mask.
Before, the DAGCombiner only called method
'TargetLowering::isShuffleMaskLegal' to check if it was "safe" to fold according
to the above-mentioned rule. However, this caused a crash in the x86 backend
since method 'isShuffleMaskLegal' always expects to be called on a
legal vector type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212915 91177308-0d34-0410-b5e6-96231b3b80d8
Our verifier check for checking if a global has local linkage was too
strict. Forbid private linkage but permit local linkage.
Object file formats permit this and forbidding it prevents elimination
of unused, internal, vftables under the MSVC ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212900 91177308-0d34-0410-b5e6-96231b3b80d8
MC was aping a binutils bug where aliases would default their linkage to
private instead of internal.
I've sent a patch to the binutils maintainers and they've recently
applied it to the GNU assembler sources.
This fixes PR20152.
Differential Revision: http://reviews.llvm.org/D4395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212899 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a llvm.aarch64.hint intrinsic to mirror the llvm.arm.hint in order to
support the various hint intrinsic functions in the ACLE.
Add an optional pattern field that permits the subclass to specify the pattern
that matches the selection. The intrinsic pattern is set as mayLoad, mayStore,
so overload the value for the definition of the hint instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212883 91177308-0d34-0410-b5e6-96231b3b80d8
Currently ASan instrumentation pass creates a string with global name
for each instrumented global (to include global names in the error report). Global
name is already mangled at this point, and we may not be able to demangle it
at runtime (e.g. there is no __cxa_demangle on Android).
Instead, create a string with fully qualified global name in Clang, and pass it
to ASan instrumentation pass in llvm.asan.globals metadata. If there is no metadata
for some global, ASan will use the original algorithm.
This fixes https://code.google.com/p/address-sanitizer/issues/detail?id=264.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212872 91177308-0d34-0410-b5e6-96231b3b80d8
the specified section. This is same functionality as darwin’s nm(1) "-s" flag.
There is one FIXME in the code and I’m all ears to anyone that can help me
with that. This option takes exactly two strings and should be allowed
anywhere on the command line. Such that "llvm-nm -s __TEXT __text foo.o"
would work. But that does not as the CommandLine Library does not have a
way to make this work as far as I can tell. For now the "-s __TEXT __text"
has to be last on the command line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212842 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes a bug in PPCRegisterInfo::isFrameOffsetLegal that
could result in the LocalStackAlloc pass creating an MI instruction
out-of-range displacement:
%vreg17<def> = LD 33184, %vreg31; mem:LD8[%g](align=32)
%G8RC:%vreg17 G8RC_and_G8RC_NOX0:%vreg31
(In final assembler output the top bits are stripped off, resulting
in a negative offset loading from below the stack pointer.)
Common code expects the isFrameOffsetLegal routine to verify whether
adding a given offset to the offset already present in the instruction
results in a valid displacement. However, on PowerPC the routine
did not take the already present instruction offset into account.
This commit fixes isFrameOffsetLegal to add the instruction offset,
and updates a local caller (needsFrameBaseReg) to no longer add the
instruction offset itself before calling isFrameOffsetLegal.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212832 91177308-0d34-0410-b5e6-96231b3b80d8
We need the intrinsics with offsets, so why not just add them all.
The R128 parameter will also be useful for reducing SGPR usage.
GL_ARB_image_load_store also adds some image GLSL modifiers like "coherent",
so Mesa will probably translate those to slc, glc, etc.
When LLVM 3.5 is released, I'll switch Mesa to these new intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212830 91177308-0d34-0410-b5e6-96231b3b80d8