vector.resize() is significantly slower than memset in many STLs
and the cost of initializing these vectors is significant on targets
with many registers. Since we don't need the overhead of a vector,
use a simple unique_ptr instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254526 91177308-0d34-0410-b5e6-96231b3b80d8
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254404 91177308-0d34-0410-b5e6-96231b3b80d8
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254352 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements dynamic realignment of stack objects for targets
with a non-realigned stack pointer. Behaviour in FunctionLoweringInfo
is changed so that for a target that has StackRealignable set to
false, over-aligned static allocas are considered to be variable-sized
objects and are handled with DYNAMIC_STACKALLOC nodes.
It would be good to group aligned allocas into a single big alloca as
an optimization, but this is yet todo.
SystemZ benefits from this, due to its stack frame layout.
New tests SystemZ/alloca-03.ll for aligned allocas, and
SystemZ/alloca-04.ll for "no-realign-stack" attribute on functions.
Review and help from Ulrich Weigand and Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254227 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254085 91177308-0d34-0410-b5e6-96231b3b80d8
to a simple type when lowering a truncating store of a vector type. In this
case for an EVT we'll return Expand as we should in all of the cases anyhow.
The testcase triggered at the one in VectorLegalizer::LegalizeOp, inspection
found the rest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254061 91177308-0d34-0410-b5e6-96231b3b80d8
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253965 91177308-0d34-0410-b5e6-96231b3b80d8
When MergeConsecutiveStores() combines two loads and two stores into
wider loads and stores, the chain users of both of the original loads
must be transfered to the new load, because it may be that a chain
user only depends on one of the loads.
New test case: test/CodeGen/SystemZ/dag-combine-01.ll
Reviewed by James Y Knight.
Bugzilla: https://llvm.org/bugs/show_bug.cgi?id=25310#c6
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253779 91177308-0d34-0410-b5e6-96231b3b80d8
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253511 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for vector constant folding of integer/float comparisons.
This requires FoldConstantVectorArithmetic to support scalar constant operands (in this case ISD::CONDCASE). In future we should be able to support other scalar constant types as necessary (and possibly start calling FoldConstantVectorArithmetic for all node creations)
Differential Revision: http://reviews.llvm.org/D14683
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253504 91177308-0d34-0410-b5e6-96231b3b80d8
This change introduces an instrumentation intrinsic instruction for
value profiling purposes, the lowering of the instrumentation intrinsic
and raw reader updates. The raw profile data files for llvm-profdata
testing are updated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253484 91177308-0d34-0410-b5e6-96231b3b80d8
The virtual register containing the address for returned value on
stack should in the DAG be represented with a CopyFromReg node and not
a Register node. Otherwise, InstrEmitter will not make sure that it
ends up in the right register class for the target instruction.
SystemZ needs this, becuause the reg class for address registers is a
subset of the general 64 bit register class.
test/SystemZ/CodeGen/args-07.ll and args-04.ll updated to run with
-verify-machineinstrs.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253461 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253378 91177308-0d34-0410-b5e6-96231b3b80d8
Statepoint lowering currently expects that the target method of a
statepoint only defines a single value. This precludes using
statepoints with ABIs that return values in multiple registers
(e.g. the SysV AMD64 ABI). This change adds support for lowering
statepoints with mutli-def targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253339 91177308-0d34-0410-b5e6-96231b3b80d8
Richard Trieu noted that UBSan detected an overflowing shift, and the obvious fix caused a crash.
What was happening was that the shiftee (1U) was indeed too small for the possible range of shifts it had to handle, but also we were using "VT.getSizeInBits()" to get the maximum type bitwidth, but we wanted "VT.getScalarSizeInBits()" to get the vector lane size instead of the entire vector size.
Use an APInt for the shift and VT.getScalarSizeInBits().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253023 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r252565.
This also includes the revert of the commit mentioned below in order to
avoid breaking tests in AMDGPU:
Revert "AMDGPU: Set isAllocatable = 0 on VS_32/VS_64"
This reverts commit r252674.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252956 91177308-0d34-0410-b5e6-96231b3b80d8
Several backends have instructions to reverse the order of bits in an integer. Conceptually matching such patterns is similar to @llvm.bswap, and it was mentioned in http://reviews.llvm.org/D14234 that it would be best if these patterns were matched in InstCombine instead of reimplemented in every different target.
This patch introduces an intrinsic @llvm.bitreverse.i* that operates similarly to @llvm.bswap. For plumbing purposes there is also a new ISD node ISD::BITREVERSE, with simple expansion and promotion support.
The intention is that InstCombine's BSWAP detection logic will be extended to support BITREVERSE too, and @llvm.bitreverse intrinsics emitted (if the backend supports lowering it efficiently).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252878 91177308-0d34-0410-b5e6-96231b3b80d8
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252839 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Don't fold
(zext (and (load x), cst)) -> (and (zextload x), (zext cst))
if
(and (load x) cst)
will match as a zextload already and has additional users.
For example, the following IR:
%load = load i32, i32* %ptr, align 8
%load16 = and i32 %load, 65535
%load64 = zext i32 %load16 to i64
store i32 %load16, i32* %dst1, align 4
store i64 %load64, i64* %dst2, align 8
used to produce the following aarch64 code:
ldr w8, [x0]
and w9, w8, #0xffff
and x8, x8, #0xffff
str w9, [x1]
str x8, [x2]
but with this change produces the following aarch64 code:
ldrh w8, [x0]
str w8, [x1]
str x8, [x2]
Reviewers: resistor, mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14340
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252789 91177308-0d34-0410-b5e6-96231b3b80d8
This allows avoiding the default Expand behavior which
introduces stack usage. Bitcast the scalar and replace
the missing elements with undef.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252632 91177308-0d34-0410-b5e6-96231b3b80d8
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252631 91177308-0d34-0410-b5e6-96231b3b80d8
This is for AMDGPU to implement v2i64 extract as extract of
half of a v4i32.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252630 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure what the point of this was. I'm not sure why
you would ever define an instruction that produces an unallocatable
register class. No tests fail with this removed, and it seems like
it should be a verifier error to define such an instruction.
This was problematic for AMDGPU because it would make bad decisions
by arbitrarily changing the register class when unsetting isAllocatable
for VS_32/VS_64, which is currently set as a workaround to this problem.
AMDGPU uses the VS_32/VS_64 register classes to represent operands which
can use either VGPRs or SGPRs. When isAllocatable is unset for these,
this would need to pick either the SGPR or VGPR class and insert either
a copy we don't want, or an illegal copy we would need to deal with
later. A semi-arbitrary register class ordering decision is made in tablegen,
which resulted in always picking a VGPR class because it happens to have
more registers than the SGPR register class. We really just want to
use whatever register class the original register had.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252565 91177308-0d34-0410-b5e6-96231b3b80d8
We don't currently have any runtime library functions for operations on
f16 values (other than conversions to and from f32 and f64), so we
should always promote it to f32, even if that is not a legal type. In
that case, the f32 values would be softened to f32 library calls.
SoftenFloatRes_FP_EXTEND now needs to check the promoted operand's type,
as it may ne a no-op or require a different library call.
getCopyFromParts and getCopyToParts now need to cope with a
floating-point value stored in a larger integer part, as is the case for
any target that needs to store an f16 value in a 32-bit integer
register.
Differential Revision: http://reviews.llvm.org/D12856
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252459 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252383 91177308-0d34-0410-b5e6-96231b3b80d8
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252210 91177308-0d34-0410-b5e6-96231b3b80d8
There is no point in having invoke safepoints handled differently than the
call safepoints. All relevant decisions could be made by looking at whether
or not gc.result and gc.relocate lay in a same basic block. This change will
allow to lower call safepoints with relocates and results in a different
basic blocks. See test case for example.
Differential Revision: http://reviews.llvm.org/D14158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252028 91177308-0d34-0410-b5e6-96231b3b80d8
1) PR25154. This is basically a repeat of PR18102, which was fixed in
r200201, and broken again by r234430. The latter changed which of the
store nodes was merged into from the first to the last. Thus, we now
also need to prefer merging a later store at a given address into the
target node, instead of an earlier one.
2) While investigating that, I also realized I'd introduced a bug in
r236850. There, I removed a check for alignment -- not realizing that
nothing except the alignment check was ensuring that none of the stores
were overlapping! This is a really bogus way to ensure there's no
aliased stores.
A better solution to both of these issues is likely to always use the
code added in the 'if (UseAA)' branches which rearrange the chain based
on a more principled analysis. I'll look into whether that can be used
always, but in the interest of getting things back to working, I think a
minimal change makes sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251816 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Don't call `computeKnownBitsFromRangeMetadata` for extended loads --
this can cause a mismatch between the width of the !range metadata and
the width of the APInt's accumulating `KnownZero` (and `KnownOne` in the
future). This isn't a problem now, but will be after a future change.
Note: this can be made more aggressive in the future.
Reviewers: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14107
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251486 91177308-0d34-0410-b5e6-96231b3b80d8
r248010 changed the -debug output to use short ids, but did not
similarly modify the graph printer. Change to be consistent, for ease of
cross-reference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251465 91177308-0d34-0410-b5e6-96231b3b80d8
This is a usage of the IR-level fast-math-flags now that they are propagated to SDNodes.
This was originally part of D8900.
Removing the global 'enable-unsafe-fp-math' checks will require auto-upgrade and
possibly other changes.
Differential Revision: http://reviews.llvm.org/D9708
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251450 91177308-0d34-0410-b5e6-96231b3b80d8
When optimization is disabled, edge weights that are stored in MBB won't be used so that we don't have to store them. Currently, this is done by adding successors with default weight 0, and if all successors have default weights, the weight list will be empty. But that the weight list is empty doesn't mean disabled optimization (as is stated several times in MachineBasicBlock.cpp): it may also mean all successors just have default weights.
We should discourage using default weights when adding successors, because it is very easy for users to forget update the correct edge weights instead of using default ones (one exception is that the MBB only has one successor). In order to detect such usages, it is better to differentiate using default weights from the case when optimizations is disabled.
In this patch, a new interface addSuccessorWithoutWeight(MBB*) is created for when optimization is disabled. In this case, MBB will try to maintain an empty weight list, but it cannot guarantee this as for many uses of addSuccessor() whether optimization is disabled or not is not checked. But it can guarantee that if optimization is enabled, then the weight list always has the same size of the successor list.
Differential revision: http://reviews.llvm.org/D13963
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251429 91177308-0d34-0410-b5e6-96231b3b80d8
When taking the remainder of a value divided by a constant, visitREM()
attempts to convert the REM to a longer but faster sequence of instructions.
This conversion calls combine() on a speculative DIV instruction. Commit
rL250825 may cause this combine() to return a DIVREM, corrupting nearby nodes.
Flow eventually hits unreachable().
This patch adds a test case and a check to prevent visitREM() from trying
to convert the REM instruction in cases where a DIVREM is possible.
See http://reviews.llvm.org/D14035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251373 91177308-0d34-0410-b5e6-96231b3b80d8