of a precise count. Also, move RRInfo's Partial field into PtrState,
now that it won't increase the size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155513 91177308-0d34-0410-b5e6-96231b3b80d8
These lists exclude invoke unwind edges and loop backedges which
are being ignored. This makes it easier to ignore them
consistently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155500 91177308-0d34-0410-b5e6-96231b3b80d8
When an instruction match is found, but the subtarget features it
requires are not available (missing floating point unit, or thumb vs arm
mode, for example), issue a diagnostic that identifies what the feature
mismatch is.
rdar://11257547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155499 91177308-0d34-0410-b5e6-96231b3b80d8
constants in C++11 mode. I have no idea why it required such particular
circumstances to get here, the code seems clearly to rely upon unchecked
assumptions.
Specifically, when we decide to form an index into a struct type, we may
have gone through (at least one) zero-length array indexing round, which
would have left the offset un-adjusted, and thus not necessarily valid
for use when indexing the struct type.
This is just an canonicalization step, so the correct thing is to refuse
to canonicalize nonsensical GEPs of this form. Implemented, and test
case added.
Fixes PR12642. Pair debugged and coded with Richard Smith. =] I credit
him with most of the debugging, and preventing me from writing the wrong
code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155466 91177308-0d34-0410-b5e6-96231b3b80d8
Strategy.
0. Implement new classes. Classes doesn't affect anything. They still work with ConstantInt base values at this stage.
1. Fictitious replacement of current ConstantInt case values with ConstantRangesSet. Case ranges set will still hold single value, and ConstantInt *getCaseValue() will return it. But additionally implement new method in SwitchInst that allows to work with case ranges. Currenly I think it should be some wrapper that returns either single value or ConstantRangesSet object.
2. Step-by-step replacement of old "ConstantInt* getCaseValue()" with new alternative. Modify algorithms for all passes that works with SwitchInst. But don't modify LLParser and BitcodeReader/Writer. Still hold single value in each ConstantRangesSet object. On this stage some parts of LLVM will use old-style methods, and some ones new-style.
3. After all getCaseValue() usages will removed and whole LLVM and its clients will work in new style - modify LLParser, Reader and Writer. Remove getCaseValue().
4. Replace ConstantInt*-based case ranges set items with APInt ones.
Currently we are on Zero Stage: New classes.
ConstantRangesSet.
I selected ConstantArrays as case ranges set "holder" object (it is a temporary decision, I'll explain why below). The array items are may be ConstantVectors with single item, and ConstantVectors with two items (that means single number and range respectively).
The ConstantInt will used as basic value representation. It will replaced with APInt then. Of course ConstantArray and ConstantVector will go away after ConstantInt => APInt replacement.
New class mandatory features:
- bool isSatisfies(ConstantInt *V) method (need better name?). Returns true if the given value satisfies this case.
- Case's ranges and values enumeration. In some passes we need to analize each case (SwitchLowering for example).
Factory + unified clusterify.
I also propose to implement the factory that allows to build case object with user friendly way. I called it CRSBuilder by now.
Currenly I implemented the factory that allows add,remove pairs of range+successor. It also allows add existing ConstantRangesSet decompiling it to separated ranges. Factory can emit either clusters set (single case range + successor) or the set of "ConstantRangesSet + Successor" pairs.
So you can use it either as builder for new cases set for SwitchInst, or for clusterification of existing cases set.
Just call Factory.optimize() and it emits optimized and sorted clusters collection for you!
I tested clusterification on SelectionDAGBuilder - it works fine. Don't worry it was not included in this patch. Just new classes.
Factory is a template. There are two params: SuccessorClass and IsReadonly. So you can specify what successor you need (BB or MBB). And you can also restrict your factory to use values in read-only mode (SelectionDAGBuilder need IsReadonly=true). Read-only factory couldn't build the cases ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155464 91177308-0d34-0410-b5e6-96231b3b80d8
The DAG builder is a convenient place to do it. Hopefully this is more
efficient than a separate traversal over the same region.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155456 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstr sequence.
This uses the new target interface for tracking register pressure
using pressure sets to model overlapping register classes and
subregisters.
RegisterPressure results can be tracked incrementally or stored at
region boundaries. Global register pressure can be deduced from local
RegisterPressure results if desired.
This is an early, somewhat untested implementation. I'm working on
testing it within the context of a register pressure reducing
MachineScheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155454 91177308-0d34-0410-b5e6-96231b3b80d8
immediate. We can't use it here because the shuffle code does not check that
the lower part of the word is identical to the upper part.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155440 91177308-0d34-0410-b5e6-96231b3b80d8
using the pattern (vbroadcast (i32load src)). In some cases, after we generate
this pattern new users are added to the load node, which prevent the selection
of the blend pattern. This commit provides fallback patterns which perform
in-vector broadcast (using in-vector vbroadcast in AVX2 and pshufd on AVX1).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155437 91177308-0d34-0410-b5e6-96231b3b80d8
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155395 91177308-0d34-0410-b5e6-96231b3b80d8
When building LLVM on Linux with libc++ with CMake TIME_WITH_SYS_TIME is
undefined, and HAVE_SYS_TIME_H is defined. This ends up including
sys/time.h but not time.h. Unix/TimeValue.inc requires time.h for asctime_r
and localtime. libstdc++ seems to include time.h anyway, but libc++ does
not.
Fix this by always including time.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155382 91177308-0d34-0410-b5e6-96231b3b80d8