Only handles LDS atomics for now, and will be used
to replace atomics with no uses with the no return
versions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217378 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a basic (but important) use of @llvm.assume calls in ScalarEvolution.
When SE is attempting to validate a condition guarding a loop (such as whether
or not the loop count can be zero), this check should also include dominating
assumptions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217348 91177308-0d34-0410-b5e6-96231b3b80d8
From a combination of @llvm.assume calls (and perhaps through other means, such
as range metadata), it is possible that all bits of a return value might be
known. Previously, InstCombine did not check for this (which is understandable
given assumptions of constant propagation), but means that we'd miss simple
cases where assumptions are involved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217346 91177308-0d34-0410-b5e6-96231b3b80d8
This change teaches LazyValueInfo to use the @llvm.assume intrinsic. Like with
the known-bits change (r217342), this requires feeding a "context" instruction
pointer through many functions. Aside from a little refactoring to reuse the
logic that turns predicates into constant ranges in LVI, the only new code is
that which can 'merge' the range from an assumption into that otherwise
computed. There is also a small addition to JumpThreading so that it can have
LVI use assumptions in the same block as the comparison feeding a conditional
branch.
With this patch, we can now simplify this as expected:
int foo(int a) {
__builtin_assume(a > 5);
if (a > 3) {
bar();
return 1;
}
return 0;
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217345 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217344 91177308-0d34-0410-b5e6-96231b3b80d8
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.
r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:
assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
can propagate inverted known bits from the a to v.
assume(v | b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v.
assume(~(v | b) = a): For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v.
assume(v ^ b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v. For those bits in
b that are known to be one, we can propagate inverted
known bits from the a to v.
assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v. For those
bits in b that are known to be one, we can propagate
known bits from the a to v.
assume(v << c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v << c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >> c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >=_s c) where c is non-negative: The sign bit of v is zero
assume(v >_s c) where c is at least -1: The sign bit of v is zero
assume(v <=_s c) where c is negative: The sign bit of v is one
assume(v <_s c) where c is non-positive: The sign bit of v is one
assume(v <=_u c): Transfer the known high zero bits
assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
of 2, transfer one more)
A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217343 91177308-0d34-0410-b5e6-96231b3b80d8
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217342 91177308-0d34-0410-b5e6-96231b3b80d8
It's probably not a huge deal to not do this - if we could, maybe the
address could be reused by a subprogram low_pc and avoid an extra
relocation, but it's just one per CU at best.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217338 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a set of utility functions for collecting 'ephemeral' values. These
are LLVM IR values that are used only by @llvm.assume intrinsics (directly or
indirectly), and thus will be removed prior to code generation, implying that
they should be considered free for certain purposes (like inlining). The
inliner's cost analysis, and a few other passes, have been updated to account
for ephemeral values using the provided functionality.
This functionality is important for the usability of @llvm.assume, because it
limits the "non-local" side-effects of adding llvm.assume on inlining, loop
unrolling, etc. (these are hints, and do not generate code, so they should not
directly contribute to estimates of execution cost).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217335 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.
The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.
There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.
This pass will be used by follow-up commits that make use of @llvm.assume.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217334 91177308-0d34-0410-b5e6-96231b3b80d8
I hadn't actually run all the tests yet and these combines have somewhat
surprisingly far reaching effects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217333 91177308-0d34-0410-b5e6-96231b3b80d8
support for MOVDDUP which is really important for matrix multiply style
operations that do lots of non-vector-aligned load and splats.
The original motivation was to add support for MOVDDUP as the lack of it
regresses matmul_f64_4x4 by 5% or so. However, all of the rules here
were somewhat suspicious.
First, we should always be using the floating point domain shuffles,
regardless of how many copies we have to make as a movapd is *crazy*
faster than the domain switching cost on some chips. (Mostly because
movapd is crazy cheap.) Because SHUFPD can't do the copy-for-free trick
of the PSHUF instructions, there is no need to avoid canonicalizing on
UNPCK variants, so do that canonicalizing. This also ensures we have the
chance to form MOVDDUP. =]
Second, we assume SSE2 support when doing any vector lowering, and given
that we should just use UNPCKLPD and UNPCKHPD as they can operate on
registers or memory. If vectors get spilled or come from memory at all
this is going to allow the load to be folded into the operation. If we
want to optimize for encoding size (the only difference, and only
a 2 byte difference) it should be done *much* later, likely after RA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217332 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of aligning and moving the CurPtr forward, and then comparing
with End, simply calculate how much space is needed, and compare that
to how much is available.
Hopefully this avoids any doubts about comparing addresses possibly
derived from past the end of the slab array, overflowing, etc.
Also add a test where aligning CurPtr would move it past End.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217330 91177308-0d34-0410-b5e6-96231b3b80d8
field of RelocationValueRef, rather than the 'Addend' field.
This is consistent with RuntimeDyldELF's use of RelocationValueRef, and more
consistent with the semantics of the data being stored (the offset from the
start of a section or symbol).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217328 91177308-0d34-0410-b5e6-96231b3b80d8
DWARF address ranges contain a reference to the debug_info section. This offset
is an absolute relocation except on non-PE/COFF targets where it is section
relative. We would emit this incorrectly, and trying to map the debug info from
the address would fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217317 91177308-0d34-0410-b5e6-96231b3b80d8
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217310 91177308-0d34-0410-b5e6-96231b3b80d8
The finalizeObject method calls generateCodeForModule on each of the currently
'added' objects, but generateCodeForModule moves objects out of the 'added'
set as it's called. To avoid iterator invalidation issues, the added set is
copied out before any calls to generateCodeForModule.
This should fix http://llvm.org/PR20851 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217291 91177308-0d34-0410-b5e6-96231b3b80d8
computation was totally wrong, but somehow it didn't really show up with
llc.
I've added an assert that triggers on multiple existing test cases and
updated one of them to show the correct value.
There appear to still be more bugs lurking around insertps's mask. =/
However, note that this only really impacts the new vector shuffle
lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217289 91177308-0d34-0410-b5e6-96231b3b80d8
follows '~' in a clobber constraint string.
Previously llc would hit an llvm_unreachable when compiling an inline-asm
instruction with malformed constraint string "~x{21}". This commit enables
LLParser to catch the error earlier and print a more helpful diagnostic.
rdar://problem/14206559
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217288 91177308-0d34-0410-b5e6-96231b3b80d8
When linking llvm.global_ctors with the optional third element we have to handle
it specially and only copy the elements whose keys were also copied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217281 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Until r216870 LLVMCreateObjectFile returned nullptr in case of an error,
so callers could check if the call was successful. Now, it always
returns an OwningBinary wrapped as an LLVMObjectFileRef, so callers
can't check if the call was successul.
This results in a segfault running e.g.
llvm-c-test --object-list-sections < /dev/null
So the old behaviour should be restored.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5143
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217279 91177308-0d34-0410-b5e6-96231b3b80d8
Forge a test case where llvm-symbolizer has to use external .dwo
file to produce the inlining information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217270 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r217211.
Both the bfd ld and gold outputs were valid. They were using a Rela relocation,
so the value present in the relocated location was not used, which caused me
to misread the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217264 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR20523.
When spilling variables onto the stack, spillVirtReg() is setting the
parent pointer of the cloned DBG_VALUE intrinsic for the stack location
to the parent pointer of the original intrinsic. MachineInstr parent
pointers should however always point to the parent basic block.
MBB is shadowing the MBB member variable. The instruction still ends up
being inserted into the right basic block, because it's inserted after MI
which serves as the iterator.
I failed at constructing a reliable testcase for this, see
http://llvm.org/bugs/show_bug.cgi?id=20523 for a large testcases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217260 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Found a couple of cases where unsigned was still being used. These two should be the last ones in the (entire) Mips backend.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D5028
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217257 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes hitting the same negative base offset problem
that was already fixed for regular loads and stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217256 91177308-0d34-0410-b5e6-96231b3b80d8
round halfway cases away from zero
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217250 91177308-0d34-0410-b5e6-96231b3b80d8
We must constrain the destination register class of legalized operands
to a VGPR class or else the illegal operand may be folded back into
the instruction by the register coalescer.
This fixes a bug in add.ll that will be uncovered by future commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217249 91177308-0d34-0410-b5e6-96231b3b80d8
shuffle lowering for integer vectors and share it from v4i32, v8i16, and
v16i8 code paths.
Ironically, the SSE2 v16i8 code for this is now better than the SSSE3!
=] Will have to fix the SSSE3 code next to just using a single pshufb.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217240 91177308-0d34-0410-b5e6-96231b3b80d8