Patch by: simoncook
Unlike BitCasts, AddrSpaceCasts do not always produce an output the same size as its input, which was previously assumed. This fixes cases where two address spaces do not have the same size pointer, as an assertion failure would occur when trying to prove deferenceability. LoopUnswitch is used in the particular test, but LICM also exhibits the same problem.
Differential Revision: http://reviews.llvm.org/D13008
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248422 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the order of GEPs generated by Splitting GEPs
pass, specially when one of the GEPs has constant and the base is
loop invariant, then we will generate the GEP with constant first
when beneficial, to expose more cases for LICM.
If originally Splitting GEP generate the following:
do.body.i:
%idxprom.i = sext i32 %shr.i to i64
%2 = bitcast %typeD* %s to i8*
%3 = shl i64 %idxprom.i, 2
%uglygep = getelementptr i8, i8* %2, i64 %3
%uglygep7 = getelementptr i8, i8* %uglygep, i64 1032
...
Now it genereates:
do.body.i:
%idxprom.i = sext i32 %shr.i to i64
%2 = bitcast %typeD* %s to i8*
%3 = shl i64 %idxprom.i, 2
%uglygep = getelementptr i8, i8* %2, i64 1032
%uglygep7 = getelementptr i8, i8* %uglygep, i64 %3
...
For no-loop cases, the original way of generating GEPs seems to
expose more CSE cases, so we don't change the logic for no-loop
cases, and only limit our change to the specific case we are
interested in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248420 91177308-0d34-0410-b5e6-96231b3b80d8
Note: I'm am not trying to describe what "should be"; I'm only describing what is true today.
This came out of my recent question to llvm-dev titled: When can the dominator tree not contain a node for a basic block?
Differential Revision: http://reviews.llvm.org/D13078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248417 91177308-0d34-0410-b5e6-96231b3b80d8
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248405 91177308-0d34-0410-b5e6-96231b3b80d8
The BEXTR comments didn't make sense before, we may want to extend the
FP logic transform to work on vectors, and this way is more beautiful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248404 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r248388 and fixes the underlying bug: hasAddr64 was initialized
in runOnMachineFunction, but runOnMachineFunction isn't ever called in
CodeGen/WebAssembly/global.ll since that testcase has no functions. The fix
here is to use AsmPrinter's getPointerSize() as needed to determine the
pointer size instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248394 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the behavior of AddAligntmentAssumptions to match its
comment. I.e, prove the asserted alignment in the context of the caller,
not the callee.
Thanks to Mehdi Amini for seeing the issue here! Also to Artur Pilipenko
who also saw a fix for the issue.
rdar://22521387
Differential Revision: http://reviews.llvm.org/D12997
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248390 91177308-0d34-0410-b5e6-96231b3b80d8
Invoking a function which returns an aggregate can sometimes be
transformed to return a scalar value. However, this means that we need
to create an insertvalue instruction(s) to recreate the correct
aggregate type. We achieved this by inserting an insertvalue
instruction at the invoke's normal successor. However, this is not
feasible if the normal successor uses the invoke's return value inside a
PHI node.
Instead, split the edge between the invoke and the unwind successor and
create the insertvalue instruction in the new basic block. The new
basic block's successor will be the old invoke successor which leaves
us with IR which is well behaved.
This fixes PR24906.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248387 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend has some logic that only allows the fast-isel to be enabled for
subtargets where it is known to be stable. This adds a backend option to
override this and force the fast-isel to be used for any target, to allow it to
be tested.
This is an ARM-specific option, because no other backend disables the fast-isel
on a per-subtarget basis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248369 91177308-0d34-0410-b5e6-96231b3b80d8
This patches removes the x86.sse41.pmovsx* intrinsics, provides a suitable upgrade path and updates relevant tests to sign extend a subvector instead.
LLVM counterpart to D12835
Differential Revision: http://reviews.llvm.org/D13002
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248368 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It is fairly common to call SE->getConstant(Ty, 0) or
SE->getConstant(Ty, 1); this change makes such uses a little bit
briefer.
I've refactored the call sites I could find easily to use getZero /
getOne.
Reviewers: hfinkel, majnemer, reames
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12947
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248362 91177308-0d34-0410-b5e6-96231b3b80d8
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248357 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed the issue that when there is an edge from the jump table to the default statement, we should check it directly instead of checking if the sibling of the jump table header is a successor of the jump table header, which may not be the default statment but a successor of it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248354 91177308-0d34-0410-b5e6-96231b3b80d8
We may have subregister defs which are unused but not discovered and
cleaned up prior to liveness analysis. This creates multiple connected
components in the resulting live range which are forbidden in the
MachineVerifier because they would unnecesarily constrain the register
allocator. Rewrite those dead definitions to define a newly created
virtual register.
Differential Revision: http://reviews.llvm.org/D13035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248335 91177308-0d34-0410-b5e6-96231b3b80d8
This improves ConnectedVNInfoEqClasses::Distribute() to distribute the
segments and value numbers in the subranges instead of conservatively
clearing all subregister info.
No separate test here, just clearing the subrange instead of properly
distributing them would however break my upcoming fix regarding dead super
register definitions.
Differential Revision: http://reviews.llvm.org/D13075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248334 91177308-0d34-0410-b5e6-96231b3b80d8
Apart from checking that GlobalVariable is a constant, we should check
that it's not a weak constant, in which case we can't propagate its
value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248327 91177308-0d34-0410-b5e6-96231b3b80d8
ARM counterpart to r248291:
In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.
Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.
Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".
Differential Revision: http://reviews.llvm.org/D13033
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248294 91177308-0d34-0410-b5e6-96231b3b80d8
In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.
Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.
Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".
Differential Revision: http://reviews.llvm.org/D13033
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248291 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Almost no functional change since the InstrItinData's have been duplicated.
The one functional change is to remove IIBranch from the MSA branches. The
classes will be assigned to the MSA instructions as part of implementing
the P5600 scheduler.
II_IndirectBranchPseudo and II_ReturnPseudo can probably be removed. I've
preserved the itinerary information for the corresponding pseudo
instructions to avoid making a functional change to these pseudos in
this patch.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12189
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248273 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The only instructions left in IIAlu are MIPS16 specific. We're not
implementing a MIPS16 scheduler at this time so rename the class to make it
obvious that they are MIPS16 instructions.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12188
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248267 91177308-0d34-0410-b5e6-96231b3b80d8