This works like the composeSubRegisterIndices() function but transforms
a subregister lane mask instead of a subregister index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223874 91177308-0d34-0410-b5e6-96231b3b80d8
Let tablegen compute the combination of subregister lanemasks for all
subregisters in a register/register class. This is preparation for further
work subregister allocation
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223873 91177308-0d34-0410-b5e6-96231b3b80d8
Remove setting of default style, this way is not recommended and
means that all the settings have to be duplicated to demonstrate the
c-add-style method which is a much better way of doing it.
Remove the modified date as it is better stored in SVN.
Tweak a few style parameters to make them conform to the actual LLVM
style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223765 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I currently have to specify --build=mips-linux-gnu or --build=mipsel-linux-gnu
to configure in order to successfully recurse a 32-bit build of the compiler on
my mips64-linux-gnu and mips64el-linux-gnu targets. This is a bug and will be
fixed but in the meantime it will be useful to have a way to work around this.
Reviewers: tstellarAMD
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6522
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223369 91177308-0d34-0410-b5e6-96231b3b80d8
--disable-timestamps was added to the configure command way back in r142647 but
the command that echos this command to the log was not updated at the time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223351 91177308-0d34-0410-b5e6-96231b3b80d8
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223348 91177308-0d34-0410-b5e6-96231b3b80d8
This complicates a few algorithms due to not having random access, but
not by a huge degree I don't think (open to debate/design
discussion/etc).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223261 91177308-0d34-0410-b5e6-96231b3b80d8
--xunit-xml-output saves test results to disk in JUnit's xml format. This will allow Jenkins to report the details of a lit run.
Based on a patch by David Chisnall.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223163 91177308-0d34-0410-b5e6-96231b3b80d8
This is the second patch in a small series. This patch contains the MachineInstruction and x86-64 backend pieces required to lower Statepoints. It does not include the code to actually generate the STATEPOINT machine instruction and as a result, the entire patch is currently dead code. I will be submitting the SelectionDAG parts within the next 24-48 hours. Since those pieces are by far the most complicated, I wanted to minimize the size of that patch. That patch will include the tests which exercise the functionality in this patch. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.
The STATEPOINT psuedo node is generated after all gc values are explicitly spilled to stack slots. The purpose of this node is to wrap an actual call instruction while recording the spill locations of the meta arguments used for garbage collection and other purposes. The STATEPOINT is modeled as modifing all of those locations to prevent backend optimizations from forwarding the value from before the STATEPOINT to after the STATEPOINT. (Doing so would break relocation semantics for collectors which wish to relocate roots.)
The implementation of STATEPOINT is closely modeled on PATCHPOINT. Eventually, much of the code in this patch will be removed. The long term plan is to merge the functionality provided by statepoints and patchpoints. Merging their implementations in the backend is likely to be a good starting point.
Reviewed by: atrick, ributzka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223085 91177308-0d34-0410-b5e6-96231b3b80d8
Order matters for this container, it seems (using a forward_list and
replacing the original push_backs with emplace_fronts caused test
failures). I didn't look too deeply into why.
(& in retrospect, I might go back & change some of the forward_lists I
introduced to deques anyway - since most don't require removal, deque is
a more memory-friendly data structure (moderate locality while not
invalidating pointers))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222950 91177308-0d34-0410-b5e6-96231b3b80d8
Just avoid using std::map::emplace since it's not implemented in
libstdc++ 4.7.
Reapplies r222937, reverted in r222939.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222940 91177308-0d34-0410-b5e6-96231b3b80d8
Seems libstdc++ on some buildbots is lacking std::map::emplace, which is
weird... reverting while I look into it.
This reverts commit r222937.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222939 91177308-0d34-0410-b5e6-96231b3b80d8
Pointers and references to map elements are never invalidated (except on
removal, which isn't used here) so there's no need for the indirection
unless there's polymorphism at work.
A little const correctness had to be fixed, since the indirection
allowed some benign const violations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222937 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
Since the elements were not polymorphic, the unique_ptr was only used to
avoid pointer invalidation on container resizes - might as well skip the
indirection and use a container with suitable invalidation semantics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222931 91177308-0d34-0410-b5e6-96231b3b80d8
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
Primarily done by using SequenceToOffsetTable to reduce the register pressure set tables and then sizing the indices into the tables appropriately. Size a few other table entries based on content as well. Reduces X86RegisterInfo.o by ~9k.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222621 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222319 91177308-0d34-0410-b5e6-96231b3b80d8
StringSet is still a bit dodgy in that it exposes the raw iterator of
the StringMap parent, which exposes the weird detail that StringSet
actually has a 'value'... but anyway, this is useful for a handful of
clients that want to reference the newly inserted/persistent string data
in the StringSet/Map/Entry/thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222302 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222183.
Broke on the MSVC buildbots due to MSVC not producing default move
operations - I'd fix it immediately but just broke my build system a
bit, so backing out until I have a chance to get everything going again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222187 91177308-0d34-0410-b5e6-96231b3b80d8
The next step is to actually use unique_ptr in TreePatternNode's
Children vector. That will be more intrusive, and may not work,
depending on exactly how these things are handled (I have a bad
suspicion things are shared more than they should be, making this more
DAG than tree - but if it's really a tree, unique_ptr should suffice)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222183 91177308-0d34-0410-b5e6-96231b3b80d8
Indices into the table are stored in each MCRegisterClass instead of a pointer. A new method, getRegClassName, is added to MCRegisterInfo and TargetRegisterInfo to lookup the string in the table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222118 91177308-0d34-0410-b5e6-96231b3b80d8
based on instruction complexity
The order that tablegen fast-isel instruction code is generated is
currently based on the text of the predicate (using string
less-than). This patch changes this to instead use the instruction
complexity. Because the complexities are not unique a C++ multimap is
used instead of a map.
This fixes the problem where code with no predicate always comes out
first (the empty string always compares as less than all other
strings) thus making the code with predicates dead code. See the FMUL
code in PPCFastISel.cpp for an example. It also more closely matches
the normal codegen ordering. Some error checking in the tablegen
fast-isel code is fixed as well.
Patch by Bill Seurer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222038 91177308-0d34-0410-b5e6-96231b3b80d8
We might be able to use unique_ptr to handle ownership of the
TreePatternNodes too - looking into that next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221928 91177308-0d34-0410-b5e6-96231b3b80d8
Currently they are passed to tests of llvm itself, but not, for example, lld.
With this patch the options are visible in every test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221198 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is mostly that variadic output instruction
aren't handled, so it is rejected for having an inconsistent
number of operands, and then the right number of operands
isn't emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221117 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CustomCallingConv is simply a CallingConv that tablegen should not generate the
implementation for. It allows regular CallingConv's to delegate to these custom
functions. This is (currently) necessary for Mips and we cannot use CCCustom
without having to adapt to the different API that CCCustom uses.
This brings us a bit closer to being able to remove
MipsCC::analyzeCallOperands and MipsCC::analyzeFormalArguments in favour of
the common implementation.
No functional change to the targets.
Depends on D3341
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: vmedic, llvm-commits
Differential Revision: http://reviews.llvm.org/D5965
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221052 91177308-0d34-0410-b5e6-96231b3b80d8
execution of a shell command. This can happen for example if the
``RUN:`` line calls a python script which can work correctly under
Linux/OSX but will not work under Windows. A more useful error message
is now shown rather than an unhelpful backtrace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220227 91177308-0d34-0410-b5e6-96231b3b80d8
Interchangeable commit ids can now be used on this git-svnrevert, which
will figure out what kind of commit that is (if you use format rNNNN for SVN
commits) and make sure the right ids are used in the right places.
It's a little bit more robust and user-friendly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219290 91177308-0d34-0410-b5e6-96231b3b80d8
FastISel has a fixed set of virtual functions that are overridden by the
tablegen-generated code for each target. These functions are distinguished by
the kinds of operands, e.g., register + immediate = "ri". The FastISel emitter
has been blindly emitting functions with different combinations of operand
kinds, even for combinations that are completely unused by FastISel, e.g.,
"fastEmit_rrr". Change to filter out functions that will be irrelevant for
FastISel and do not bother generating the code for them. Also add explicit
"override" keywords for the virtual functions that are overridden.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218838 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The N32/N64 ABI's require that structs passed in registers are laid out
such that spilling the register with 'sd' places the struct at the lowest
address. For little endian this is trivial but for big-endian it requires
that structs are shifted into the upper bits of the register.
We also require that structs passed in registers have the 'inreg'
attribute for big-endian N32/N64 to work correctly. This is because the
tablegen-erated calling convention implementation only has access to the
lowered form of struct arguments (one or more integers of up to 64-bits
each) and is unable to determine the original type.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218451 91177308-0d34-0410-b5e6-96231b3b80d8
As far as I can tell UTF-8 has been supported since the beginning of Python's
codec support, and it's the de facto standard for text these days, at least
for primarily-English text. This allows us to put Unicode into lit RUN lines.
rdar://problem/18311663
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217688 91177308-0d34-0410-b5e6-96231b3b80d8
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217310 91177308-0d34-0410-b5e6-96231b3b80d8
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217075 91177308-0d34-0410-b5e6-96231b3b80d8