Mips16 will try and create a stub for it and this will
result in a link error because that function does not exist in libc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192223 91177308-0d34-0410-b5e6-96231b3b80d8
of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191591 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is lowered into an equivalent INSERT_VECTOR_ELT which is
further lowered into a sequence of insert.w's on MIPS32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191521 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is lowered into an equivalent BUILD_VECTOR which is further
lowered into a sequence of insert.w's on MIPS32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191519 91177308-0d34-0410-b5e6-96231b3b80d8
For v4f32 and v2f64, INSERT_VECTOR_ELT is matched by a pseudo-insn which is
later expanded to appropriate insve.[wd] insns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191515 91177308-0d34-0410-b5e6-96231b3b80d8
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191514 91177308-0d34-0410-b5e6-96231b3b80d8
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191299 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS SelectionDAG changes:
* Added VCEQ, VCL[ET]_[SU] nodes to represent vector comparisons that produce a bitmask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191286 91177308-0d34-0410-b5e6-96231b3b80d8
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191199 91177308-0d34-0410-b5e6-96231b3b80d8
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191191 91177308-0d34-0410-b5e6-96231b3b80d8
1) make sure that the first two instructions of the sequence cannot
separate from each other. The linker requires that they be sequential.
If they get separated, it can still work but it will not work in all
cases because the first of the instructions mostly involves the hi part
of the pc relative offset and that part changes slowly. You would have
to be at the right boundary for this to matter.
2) make sure that this sequence begins on a longword boundary.
There appears to be a bug in binutils which makes some of these calculations
get messed up if the instruction sequence does not begin on a longword
boundary. This is being investigated with the appropriate binutils folks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190966 91177308-0d34-0410-b5e6-96231b3b80d8