llvm.invariant.group.barrier may accept pointers to arbitrary address space.
This patch let it accept pointers to i8 in any address space and returns
pointer to i8 in the same address space.
Differential Revision: https://reviews.llvm.org/D39973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318413 91177308-0d34-0410-b5e6-96231b3b80d8
- Use ELF header flags to identify processor.
- Remove isa note record.
- Add target feature section.
- Make metadata for NumVGPRs, NumSGPRs and MaxFlatWorkGroupSize required.
- Add FixedWorkGroupSize to CodeProps metadata.
- Add ReqdWorkGroupSize* to kernel descriptor and move MaxFlatWorkGroupSize to be adjacent.
- Move IsXNACKEnabled in the kernel descriptor to be at the end of the unused flags.
- Remove IsDynamicCallStack from the metadata and kernel descriptor.
- Remove legacy debugger metadata.
- Remove old XNACK enabled processor names.
Differential Revision: https://reviews.llvm.org/D39828
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317855 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317729 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes it very easy to test files that only differ in a constant
value somewhere in the test case.
Reviewers: jlebar, hfinkel, chandlerc, probinson
Reviewed By: probinson
Subscribers: probinson, llvm-commits
Differential Revision: https://reviews.llvm.org/D39629
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317572 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317488 91177308-0d34-0410-b5e6-96231b3b80d8
It is currently not possible to build the documentation with cmake and
the same version of Sphinx (1.5.1) used to generate the public facing
documentation on llvm.org. When code blocks cannot be parsed by
Pygments, it generates a warning which is treated as an error.
In addition to being annoying and confusing for developers, this
needlessly increases the bar for newcomers that want to get involved.
This patch removes the language specifier from the affected block. The
result is the same as when parsing fails: the block are not highlighted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317472 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently the block frequency analysis is an approximation for irreducible
loops.
The new irreducible loop metadata is used to annotate the irreducible loop
headers with their header weights based on the PGO profile (currently this is
approximated to be evenly weighted) and to help improve the accuracy of the
block frequency analysis for irreducible loops.
This patch is a basic support for this.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39028
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317278 91177308-0d34-0410-b5e6-96231b3b80d8
The LLVM tools can be used as a replacement for binutils, in which case
it's convenient to create symlinks with the binutils names. Add support
for these symlinks in the build system. As with any other llvm tool
symlinks, the user can limit the installed symlinks by only adding the
desired ones to `LLVM_TOOLCHAIN_TOOLS`.
Differential Revision: https://reviews.llvm.org/D39530
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317272 91177308-0d34-0410-b5e6-96231b3b80d8
Identifies kernels which performs device side kernel enqueues and emit
metadata for the associated hidden kernel arguments. Such kernels are
marked with calls-enqueue-kernel function attribute by
AMDGPUOpenCLEnqueueKernelLowering pass and later on
hidden kernel arguments metadata HiddenDefaultQueue and
HiddenCompletionAction are emitted for them.
Differential Revision: https://reviews.llvm.org/D39255
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316907 91177308-0d34-0410-b5e6-96231b3b80d8
Currently we do not represent runtime preemption in the IR, which has several
drawbacks:
1) The semantics of GlobalValues differ depending on the object file format
you are targeting (as well as the relocation-model and -fPIE value).
2) We have no way of disabling inlining of run time interposable functions,
since in the IR we only know if a function is link-time interposable.
Because of this llvm cannot support elf-interposition semantics.
3) In LTO builds of executables we will have extra knowledge that a symbol
resolved to a local definition and can't be preemptable, but have no way to
propagate that knowledge through the compiler.
This patch adds preemptability specifiers to the IR with the following meaning:
dso_local --> means the compiler may assume the symbol will resolve to a
definition within the current linkage unit and the symbol may be accessed
directly even if the definition is not within this compilation unit.
dso_preemptable --> means that the compiler must assume the GlobalValue may be
replaced with a definition from outside the current linkage unit at runtime.
To ease transitioning dso_preemptable is treated as a 'default' in that
low-level codegen will still do the same checks it did previously to see if a
symbol should be accessed indirectly. Eventually when IR producers emit the
specifiers on all Globalvalues we can change dso_preemptable to mean 'always
access indirectly', and remove the current logic.
Differential Revision: https://reviews.llvm.org/D20217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316668 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When describing trunc/zext/sext/ptrtoint/inttoptr in the chapter
about Constant Expressions we now simply refer to the Instruction
Reference. As far as I know there are no difference when it comes
to the semantics and the argument constraints. The only difference
is that the syntax is slighly different for the constant expressions,
regarding the use of parenthesis in constant expressions.
Referring to the Instruction Reference is the same solution as
already used for several other operations, such as bitcast.
The main goal was to add information that vector types are allowed
also in trunc/zext/sext/ptrtoint/inttoptr constant expressions.
That was not explicitly mentioned earlier, and resulted in some
questions in the review of https://reviews.llvm.org/D38546
Reviewers: efriedma, majnemer
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39165
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316429 91177308-0d34-0410-b5e6-96231b3b80d8
static __global int Var = 0;
__global int* Ptr[] = {&Var};
...
In this case Var is a non premptable symbol and so its address can be used as the value of Ptr, with a base relative relocation that will add the delta between the ELF address and the actual load address. Such relocations do not require a symbol.
Differential Revision: https://reviews.llvm.org/D38909
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315935 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r315697 and my ill-fated attempts to fix it on Windows.
I'll try again when I get access to a Windows machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315793 91177308-0d34-0410-b5e6-96231b3b80d8
This refers to a temporary path that can be shared across all tests,
identified by a particular label. This can be used for things like
caches.
At the moment, the character set for the LABEL is limited to C
identifier characters, plus '-', '+', '=', and '.'. This is the same
set of characters currently allowed in REQUIRES clause identifiers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315697 91177308-0d34-0410-b5e6-96231b3b80d8
Here we add a secondary option parser to llvm-isel-fuzzer (and provide
it for use with other fuzzers). With this, you can copy the fuzzer to
a name like llvm-isel-fuzzer=aarch64-gisel for a fuzzer that fuzzer
AArch64 with GlobalISel enabled, or fuzzer=x86_64 to fuzz x86, with no
flags required. This should be useful for running these in OSS-Fuzz.
Note that this handrolls a subset of cl::opts to recognize, rather
than embedding a complete command parser for argv[0]. If we find we
really need the flexibility of handling arbitrary options at some
point we can rethink this.
This re-applies 315545 using "=" instead of ":" as a separator for
arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315557 91177308-0d34-0410-b5e6-96231b3b80d8
It broke some tests on Windows:
Failing Tests (4):
LLVM :: tools/llvm-isel-fuzzer/execname-options.ll
LLVM :: tools/llvm-isel-fuzzer/missing-triple.ll
LLVM :: tools/llvm-isel-fuzzer/x86-empty-bc.ll
LLVM :: tools/llvm-isel-fuzzer/x86-empty.ll
> llvm-isel-fuzzer: Handle a subset of backend flags in the executable name
>
> Here we add a secondary option parser to llvm-isel-fuzzer (and provide
> it for use with other fuzzers). With this, you can copy the fuzzer to
> a name like llvm-isel-fuzzer:aarch64-gisel for a fuzzer that fuzzer
> AArch64 with GlobalISel enabled, or fuzzer:x86_64 to fuzz x86, with no
> flags required. This should be useful for running these in OSS-Fuzz.
>
> Note that this handrolls a subset of cl::opts to recognize, rather
> than embedding a complete command parser for argv[0]. If we find we
> really need the flexibility of handling arbitrary options at some
> point we can rethink this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315554 91177308-0d34-0410-b5e6-96231b3b80d8
Here we add a secondary option parser to llvm-isel-fuzzer (and provide
it for use with other fuzzers). With this, you can copy the fuzzer to
a name like llvm-isel-fuzzer:aarch64-gisel for a fuzzer that fuzzer
AArch64 with GlobalISel enabled, or fuzzer:x86_64 to fuzz x86, with no
flags required. This should be useful for running these in OSS-Fuzz.
Note that this handrolls a subset of cl::opts to recognize, rather
than embedding a complete command parser for argv[0]. If we find we
really need the flexibility of handling arbitrary options at some
point we can rethink this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315545 91177308-0d34-0410-b5e6-96231b3b80d8