This commit fixes an assert that would occur on loops with large constant counts
(like looping for ((uint32_t) -1) iterations on PPC64). The existing code did
not handle counts that it computed to be negative (asserting instead), but
these can be created with valid inputs.
This bug was discovered by bugpoint while I was attempting to isolate a
completely different problem.
Also, in writing test cases for the negative-count problem, I discovered that
the ori/lsi handling was broken (there was a typo which caused the logic that
was supposed to detect these pairs and extract the iteration count to always
fail). This has now also been corrected (and is covered by one of the new test
cases).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177295 91177308-0d34-0410-b5e6-96231b3b80d8
Because the initial-value constants had not been added to the list
of instructions considered for DCE the resulting code had redundant
constant-materialization instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177294 91177308-0d34-0410-b5e6-96231b3b80d8
This change cleans up two issues with Altivec register spilling:
1. The spilling code was inefficient (using two instructions, and add and a
load, when just one would do)
2. The code assumed that r0 would always be available (true for now, but this
will change)
The new code handles VR spilling just like GPR spills but forced into r+r mode.
As a result, when any VR spills are present, we must now always allocate the
register-scavenger spill slot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177231 91177308-0d34-0410-b5e6-96231b3b80d8
As a follow-up to r158719, remove PPCRegisterInfo::avoidWriteAfterWrite.
Jakob pointed out in response to r158719 that this callback is currently unused
and so this has no effect (and the speedups that I thought that I had observed
as a result of implementing this function must have been noise).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177228 91177308-0d34-0410-b5e6-96231b3b80d8
Unaligned access is supported on PPC for non-vector types, and is generally
more efficient than manually expanding the loads and stores.
A few of the existing test cases were using expanded unaligned loads and stores
to test other features (like load/store with update), and for these test cases,
unaligned access remains disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177160 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for the addition of other SIMD ISA extensions (such as QPX) we
need to make sure that all Altivec patterns are properly predicated on having
Altivec support.
No functionality change intended (one test case needed to be updated b/c it
assumed that Altivec intrinsics would be supported without enabling Altivec
support).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177152 91177308-0d34-0410-b5e6-96231b3b80d8
For spills into a large stack frame, the FI-elimination code uses the register
scavenger to obtain a free GPR for use with an r+r-addressed load or store.
When there are no available GPRs, the scavenger gets one by using its spill
slot. Previously, we were not always allocating that spill slot and the RS
would assert when the spill slot was needed.
I don't currently have a small test that triggered the assert, but I've
created a small regression test that verifies that the spill slot is now
added when the stack frame is sufficiently large.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177140 91177308-0d34-0410-b5e6-96231b3b80d8
Add the current PEI register scavenger as a parameter to the
processFunctionBeforeFrameFinalized callback.
This change is necessary in order to allow the PowerPC target code to
set the register scavenger frame index after the save-area offset
adjustments performed by processFunctionBeforeFrameFinalized. Only
after these adjustments have been made is it possible to estimate
the size of the stack frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177108 91177308-0d34-0410-b5e6-96231b3b80d8
Make requiresFrameIndexScavenging return true, and create virtual registers in
the spilling code instead of using the register scavenger directly. This makes
the target-level code simpler, and importantly, delays the scavenging until
after callee-saved register processing (which will be important for later
changes).
Also cleans up trackLivenessAfterRegAlloc (makes it inline in the header with
the other related functions). This makes it clear that it always returns true.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177107 91177308-0d34-0410-b5e6-96231b3b80d8
We used to add a spill slot for the register scavenger whenever the function
has a frame pointer. This is unnecessarily conservative: We may need the spill
slot for dynamic stack allocations, and functions with dynamic stack
allocations always have a FP, but we might also have a FP for other reasons
(such as the user explicitly disabling frame-pointer elimination), and we don't
necessarily need a spill slot for those functions.
The structsinregs test needed adjustment because it disables FP elimination.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177106 91177308-0d34-0410-b5e6-96231b3b80d8
I don't think that it is otherwise clear how the overlapping offsets
are processed into distinct spill slots. Comment that this is done
in processFunctionBeforeFrameFinalized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177094 91177308-0d34-0410-b5e6-96231b3b80d8
Now that only the register-scavenger version of the CR spilling code remains,
we no longer need the Darwin R2 hack. Darwin can use R0 as a spare register in
any case where the System V ABI uses it (R0 is special architecturally, and so
is reserved under all common ABIs).
A few test cases needed to be updated to reflect the register-allocation changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176868 91177308-0d34-0410-b5e6-96231b3b80d8
This removes the -disable-ppc[32|64]-regscavenger options; the code
that uses the register scavenger has been working well (and has been the default)
for some time, and we don't need options to enable the old (broken) CR spilling code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176865 91177308-0d34-0410-b5e6-96231b3b80d8
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176364 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need to generate a stack frame for PPC32 SVR4 when there are
no local variables assigned to the stack, i.e., when no red zone is needed.
(PPC64 supports a red zone, but PPC32 does not.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176124 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a const_cast hack from PPCRegisterInfo::hasReservedSpillSlot().
The proper place to save the frame index for the CR spill slot is in the
PPCFunctionInfo object, not the PPCRegisterInfo object.
No new test cases, as this just reimplements existing function. Existing
tests such as test/CodeGen/PowerPC/crsave.ll are sufficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175998 91177308-0d34-0410-b5e6-96231b3b80d8
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
Large code model is identical to medium code model except that the
addis/addi sequence for "local" accesses is never used. All accesses
use the addis/ld sequence.
The coding changes are straightforward; most of the patch is taken up
with creating variants of the medium model tests for large model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175767 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the PPCDAGToDAGISel::PostprocessISelDAG virtual
method to perform post-selection peephole optimizations on the DAG
representation.
One optimization is implemented here: folds to clean up complex
addressing expressions for thread-local storage and medium code
model. It will also be useful for large code model sequences when
those are added later. I originally thought about doing this on the
MI representation prior to register assignment, but it's difficult to
do effective global dead code elimination at that point. DCE is
trivial on the DAG representation.
A typical example of a candidate code sequence in assembly:
addis 3, 2, globalvar@toc@ha
addi 3, 3, globalvar@toc@l
lwz 5, 0(3)
When the final instruction is a load or store with an immediate offset
of zero, the offset from the add-immediate can replace the zero,
provided the relocation information is carried along:
addis 3, 2, globalvar@toc@ha
lwz 5, globalvar@toc@l(3)
Since the addi can in general have multiple uses, we need to only
delete the instruction when the last use is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175697 91177308-0d34-0410-b5e6-96231b3b80d8
This handles the cases where the 6-bit splat element is odd, converting
to a three-instruction sequence to add or subtract two splats. With this
fix, the XFAIL in test/CodeGen/PowerPC/vec_constants.ll is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175663 91177308-0d34-0410-b5e6-96231b3b80d8
The PPC backend doesn't handle these correctly. This patch uses logic
similar to that in the X86 and ARM backends to track these arguments
properly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175635 91177308-0d34-0410-b5e6-96231b3b80d8
During lowering of a BUILD_VECTOR, we look for opportunities to use a
vector splat. When the splatted value fits in 5 signed bits, a single
splat does the job. When it doesn't fit in 5 bits but does fit in 6,
and is an even value, we can splat on half the value and add the result
to itself.
This last optimization hasn't been working recently because of improved
constant folding. To circumvent this, create a pseudo VADD_SPLAT that
can be expanded during instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175632 91177308-0d34-0410-b5e6-96231b3b80d8
GCC warns about the attribute being ignored if it occurs after void*.
There seems to be some kind of incompatibility between clang and gcc here, but
I can't fathom who's right.
void* LLVM_LIBRARY_VISIBILITY foo(); // clang: hidden, gcc: default
LLVM_LIBRARY_VISIBILITY void *bar(); // clang: hidden, gcc: hidden
void LLVM_LIBRARY_VISIBILITY qux(); // clang: hidden, gcc: hidden
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175394 91177308-0d34-0410-b5e6-96231b3b80d8
than we need to and some ELF linkers complain about directly accessing symbols
with default visibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175268 91177308-0d34-0410-b5e6-96231b3b80d8
blocks. We still don't have consensus if we should try to change clang or
the standard, but llvm should work with compilers that implement the current
standard and mangle those functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175267 91177308-0d34-0410-b5e6-96231b3b80d8
Since functions with internal linkage don't have language linkage, it is valid
to overload them:
extern "C" {
static int foo();
static int foo(int);
}
So we mangle them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175120 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to help from Nadav and Hal, I have a more reasonable (and even
correct!) approach. This specifically penalizes the insertelement
and extractelement operations for the performance hit that will occur
on PowerPC processors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174725 91177308-0d34-0410-b5e6-96231b3b80d8
Certain vector operations don't vectorize well with the current
PowerPC implementation. Element insert/extract performs poorly
without VSX support because Altivec requires going through memory.
SREM, UREM, and VSELECT all produce bad scalar code.
There's a lot of work to do for the cost model before
autovectorization will be tuned well, and this is not an attempt to
address the larger problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174660 91177308-0d34-0410-b5e6-96231b3b80d8
Most of PPCCallingConv.td is used only by the 32-bit SVR4 ABI. Rename
things to clarify this. Also delete some code that's been commented out
for a long time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174526 91177308-0d34-0410-b5e6-96231b3b80d8
The liveout lists are about to be removed from MRI, this is the only
place they were used after register allocation.
Get the live out V registers directly from the return instructions
instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174399 91177308-0d34-0410-b5e6-96231b3b80d8
I didn't see those because the test case used "not grep". FileCheck the test and
XFAIL it, preserving the old optimization, so this can be fixed eventually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174330 91177308-0d34-0410-b5e6-96231b3b80d8
This required disabling a PowerPC optimization that did the following:
input:
x = BUILD_VECTOR <i32 16, i32 16, i32 16, i32 16>
lowered to:
tmp = BUILD_VECTOR <i32 8, i32 8, i32 8, i32 8>
x = ADD tmp, tmp
The add now gets folded immediately and we're back at the BUILD_VECTOR we
started from. I don't see a way to fix this currently so I left it disabled
for now.
Fix some trivially foldable X86 tests too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174325 91177308-0d34-0410-b5e6-96231b3b80d8